ﻻ يوجد ملخص باللغة العربية
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the analytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as $1/f^2$, the averaged response function for the longitudinal mode falls off as $1/f$ and the averaged response function for the vector mode falls off as $ln(f)/f^2$.
The discovery of gravitational waves, which are ripples of space-time itself, opened a new window to test general relativity, because it predicts that there are only plus and cross polarizations for gravitational waves. For alternative theories of gr
Space-based gravitational wave detectors cannot keep rigid structures and precise arm length equality, so the precise equality of detector arms which is required in a ground-based interferometer to cancel the overwhelming laser noise is impossible. T
We rigorously analyze the frequency response functions and antenna sensitivity patterns of three types of interferometric detectors to scalar mode of gravitational waves which is predicted to exist in the scalar-tensor theory of gravity. By a straigh
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m
Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second generation ground based gravitational wave detectors. Reshaping the beam to a flatter wider profile which probes more of the mirror surface re