ترغب بنشر مسار تعليمي؟ اضغط هنا

On Infinite Real Trace Rational Languages of Maximum Topological Complexity

165   0   0.0 ( 0 )
 نشر من قبل Olivier Finkel
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Olivier Finkel




اسأل ChatGPT حول البحث

We consider the set of infinite real traces, over a dependence alphabet (Gamma, D) with no isolated letter, equipped with the topology induced by the prefix metric. We then prove that all rational languages of infinite real traces are analytic sets and that there exist some rational languages of infinite real traces which are analytic but non Borel sets, and even Sigma^1_1-complete, hence of maximum possible topological complexity.



قيم البحث

اقرأ أيضاً

We show that there are $Sigma_3^0$-complete languages of infinite words accepted by non-deterministic Petri nets with Buchi acceptance condition, or equivalently by Buchi blind counter automata. This shows that omega-languages accepted by non-determi nistic Petri nets are topologically more complex than those accepted by deterministic Petri nets.
225 - Olivier Finkel 2013
We survey recent results on the topological complexity of context-free omega-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non- deterministic or deterministic context-free omega-languages. We study also decision problems, the links with the notions of ambiguity and of degrees of ambiguity, and the special case of omega-powers.
164 - Olivier Finkel 2008
Locally finite omega languages were introduced by Ressayre in [Journal of Symbolic Logic, Volume 53, No. 4, p.1009-1026]. They generalize omega languages accepted by finite automata or defined by monadic second order sentences. We study here closure properties of the family LOC_omega of locally finite omega languages. In particular we show that the class LOC_omega is neither closed under intersection nor under complementation, giving an answer to a question of Ressayre.
173 - Olivier Finkel 2017
We prove that $omega$-languages of (non-deterministic) Petri nets and $omega$-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of $omega$-languages of (non-determinist ic) Petri nets are equal to the Borel and Wadge hierarchies of the class of $omega$-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal $alpha < omega_1^{{rm CK}} $ there exist some ${bf Sigma}^0_alpha$-complete and some ${bf Pi}^0_alpha$-complete $omega$-languages of Petri nets, and the supremum of the set of Borel ranks of $omega$-languages of Petri nets is the ordinal $gamma_2^1$, which is strictly greater than the first non-recursive ordinal $omega_1^{{rm CK}}$. We also prove that there are some ${bf Sigma}_1^1$-complete, hence non-Borel, $omega$-languages of Petri nets, and that it is consistent with ZFC that there exist some $omega$-languages of Petri nets which are neither Borel nor ${bf Sigma}_1^1$-complete. This answers the question of the topological complexity of $omega$-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].
259 - Olivier Finkel 2020
The $omega$-power of a finitary language L over a finite alphabet $Sigma$ is the language of infinite words over $Sigma$ defined by L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L}. The $omega$-powers appear very na turally in Theoretical Computer Science in the characterization of several classes of languages of infinite words accepted by various kinds of automata, like B{u}chi automata or B{u}chi pushdown automata. We survey some recent results about the links relating Descriptive Set Theory and $omega$-powers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا