ﻻ يوجد ملخص باللغة العربية
We survey recent results on the topological complexity of context-free omega-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non-deterministic or deterministic context-free omega-languages. We study also decision problems, the links with the notions of ambiguity and of degrees of ambiguity, and the special case of omega-powers.
This is an extended abstract presenting new results on the topological complexity of omega-powers (which are included in a paper Classical and effective descriptive complexities of omega-powers available from arXiv:0708.4176) and reflecting also some
We show that, from a topological point of view, considering the Borel and the Wadge hierarchies, 1-counter Buchi automata have the same accepting power than Turing machines equipped with a Buchi acceptance condition. In particular, for every non null
An {omega}-language is a set of infinite words over a finite alphabet X. We consider the class of recursive {omega}-languages, i.e. the class of {omega}-languages accepted by Turing machines with a Buchi acceptance condition, which is also the class
We prove in this paper that the length of the Wadge hierarchy of omega context free languages is greater than the Cantor ordinal epsilon_omega, which is the omega-th fixed point of the ordinal exponentiation of base omega. The same result holds for t
We show that there are $Sigma_3^0$-complete languages of infinite words accepted by non-deterministic Petri nets with Buchi acceptance condition, or equivalently by Buchi blind counter automata. This shows that omega-languages accepted by non-determi