ترغب بنشر مسار تعليمي؟ اضغط هنا

On the cluster multiplication theorem for acyclic cluster algebras

207   0   0.0 ( 0 )
 نشر من قبل Fan Xu
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Fan Xu




اسأل ChatGPT حول البحث

In cite{CK2005} and cite{Hubery2005}, the authors proved the cluster multiplication theorems for finite type and affine type. We generalize their results and prove the cluster multiplication theorem for arbitrary type by using the properties of 2--Calabi--Yau (Auslander--Reiten formula) and high order associativity.



قيم البحث

اقرأ أيضاً

Let $Q$ be a finite acyclic valued quiver. We give the high-dimensional cluster multiplication formulas in the quantum cluster algebra of $Q$ with arbitrary coefficients, by applying certain quotients of derived Hall subalgebras of $Q$.
140 - Bernhard Keller 2010
This is a concise introduction to Fomin-Zelevinskys cluster algebras and their links with the representation theory of quivers in the acyclic case. We review the definition of cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.
286 - Jie Xiao , Fan Xu 2008
The objective of the present paper is to give a survey of recent progress on applications of the approaches of Ringel-Hall type algebras to quantum groups and cluster algebras via various forms of Greens formula. In this paper, three forms of Greens formula are highlighted, (1) the original form of Greens formula cite{Green}cite{RingelGreen}, (2) the degeneration form of Greens formula cite{DXX} and (3) the projective form of Greens formula cite{XX2007a} i.e. Green formula with a $bbc^{*}$-action.
Building on work by Geiss-Leclerc-Schroer and by Buan-Iyama-Reiten-Scott we investigate the link between certain cluster algebras with coefficients and suitable 2-Calabi-Yau categories. These include the cluster-categories associated with acyclic qui vers and certain Frobenius subcategories of module categories over preprojective algebras. Our motivation comes from the conjectures formulated by Fomin and Zelevinsky in `Cluster algebras IV: Coefficients. We provide new evidence for Conjectures 5.4, 6.10, 7.2, 7.10 and 7.12 and show by an example that the statement of Conjecture 7.17 does not always hold.
213 - Pin Liu 2008
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا