ترغب بنشر مسار تعليمي؟ اضغط هنا

Acyclic quantum cluster algebras via derived Hall algebras

198   0   0.0 ( 0 )
 نشر من قبل Haicheng Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Q$ be a finite acyclic valued quiver. We give the high-dimensional cluster multiplication formulas in the quantum cluster algebra of $Q$ with arbitrary coefficients, by applying certain quotients of derived Hall subalgebras of $Q$.



قيم البحث

اقرأ أيضاً

333 - Ming Lu 2021
We use semi-derived Ringel-Hall algebras of quivers with loops to realize the whole quantum Borcherds-Bozec algebras and quantum generalized Kac-Moody algebras.
146 - Jie Xiao , Han Xu , Minghui Zhao 2021
Let $textbf{U}^+$ be the positive part of the quantum group $textbf{U}$ associated with a generalized Cartan matrix. In the case of finite type, Lusztig constructed the canonical basis $textbf{B}$ of $textbf{U}^+$ via two approaches. The first one is an elementary algebraic construction via Ringel-Hall algebra realization of $textbf{U}^+$ and the second one is a geometric construction. The geometric construction of canonical basis can be generalized to the cases of all types. The generalization of the elementary algebraic construction to affine type is an important problem. We give several main results of algebraic constructions to the affine canonical basis in this ariticle. These results are given by Beck-Nakajima, Lin-Xiao-Zhang, Xiao-Xu-Zhao, respectively.
145 - Bernhard Keller 2010
This is a concise introduction to Fomin-Zelevinskys cluster algebras and their links with the representation theory of quivers in the acyclic case. We review the definition of cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.
103 - Ryo Fujita 2016
We discuss tilting modules of affine quasi-hereditary algebras. We present an existence theorem of indecomposable tilting modules when the algebra has a large center and use it to deduce a criterion for an exact functor between two affine highest wei ght categories to give an equivalence. As an application, we prove that the Arakawa-Suzuki functor [Arakawa-Suzuki, J. of Alg. 209 (1998)] gives a fully faithful embedding of a block of the deformed BGG category of $mathfrak{gl}_{m}$ into the module category of a suitable completion of degenerate affine Hecke algebra of $GL_{n}$.
227 - Fan Xu 2008
In cite{CK2005} and cite{Hubery2005}, the authors proved the cluster multiplication theorems for finite type and affine type. We generalize their results and prove the cluster multiplication theorem for arbitrary type by using the properties of 2--Ca labi--Yau (Auslander--Reiten formula) and high order associativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا