ﻻ يوجد ملخص باللغة العربية
It is proven that if an interpolation map between two wavelet sets preserves the union of the sets, then the pair must be an interpolation pair. We also construct an example of a pair of wavelet sets for which the congruence domains of the associated interpolation map and its inverse are equal, and yet the pair is not an interpolation pair. The first result solves affirmatively a problem that the second author had posed several years ago, and the second result solves an intriguing problem of D. Han. The key to this counterexample is a special technical lemma on constructing wavelet sets. Several other applications of this result are also given. In addition, some problems are posed. We also take the opportunity to give some general exposition on wavelet sets and operator-theoretic interpolation of wavelets.
We prove a Caratheodory-Fejer type interpolation theorem for certain matrix convex sets in $C^d$ using the Blecher-Ruan-Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyi-Verbovetzkii for the d-dimensional non-commutative polydisc.
We refine a result of Matei and Meyer on stable sampling and stable interpolation for simple model sets. Our setting is model sets in locally compact abelian groups and Fourier analysis of unbounded complex Radon measures as developed by Argabright a
We introduce the notion of $k$-trace and use interpolation of operators to prove the joint concavity of the function $(A,B)mapstotext{Tr}_kbig[(B^frac{qs}{2}K^*A^{ps}KB^frac{qs}{2})^{frac{1}{s}}big]^frac{1}{k}$, which generalizes Liebs concavity theo
We initiate the study of the completely bounded multipliers of the Haagerup tensor product $A(G)otimes_{rm h} A(G)$ of two copies of the Fourier algebra $A(G)$ of a locally compact group $G$. If $E$ is a closed subset of $G$ we let $E^{sharp} = {(s,t
We show that for every pair of matrices (S,P), having the closed symmetrized bidisc $Gamma$ as a spectral set, there is a one dimensional complex algebraic variety $Lambda$ in $Gamma$ such that for every matrix valued polynomial f, the norm of f(S,P)