ﻻ يوجد ملخص باللغة العربية
We introduce the notion of $k$-trace and use interpolation of operators to prove the joint concavity of the function $(A,B)mapstotext{Tr}_kbig[(B^frac{qs}{2}K^*A^{ps}KB^frac{qs}{2})^{frac{1}{s}}big]^frac{1}{k}$, which generalizes Liebs concavity theorem from trace to a class of homogeneous functions $text{Tr}_k[cdot]^frac{1}{k}$. Here $text{Tr}_k[A]$ denotes the $k_{text{th}}$ elementary symmetric polynomial of the eigenvalues of $A$. This result gives an alternative proof for the concavity of $Amapstotext{Tr}_kbig[exp(H+log A)big]^frac{1}{k}$ that was obtained and used in a recent work to derive expectation estimates and tail bounds on partial spectral sums of random matrices.
We show that Liebs concavity theorem holds more generally for any unitarily invariant matrix function $phi:mathbf{H}^n_+rightarrow mathbb{R}$ that is monotone and concave. Concretely, we prove the joint concavity of the function $(A,B) mapstophibig[(
We show that Liebs concavity theorem holds more generally for any unitary invariant matrix function $phi:mathbf{H}_+^nrightarrow mathbb{R}_+^n$ that is concave and satisfies Holders inequality. Concretely, we prove the joint concavity of the function
We prove a Caratheodory-Fejer type interpolation theorem for certain matrix convex sets in $C^d$ using the Blecher-Ruan-Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyi-Verbovetzkii for the d-dimensional non-commutative polydisc.
We develop a natural generalization of vector-valued frame theory, we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for o