ﻻ يوجد ملخص باللغة العربية
Given an iterated skew polynomial ring C[y_1;t_1,d_1]ldots [y_n;t_n,d_n] over a complete local ring C with maximal ideal m, we prove, under suitable assumptions, that the completion at the ideal m + < y_1,y_2,ldots,y_n> is an iterated skew power series ring. Under further conditions, this completion is a local, noetherian, Auslander regular domain. Applicable examples include quantum matrices, quantum symplectic spaces, and quantum Euclidean space.
A theory of monoids in the category of bicomodules of a coalgebra $C$ or $C$-rings is developed. This can be viewed as a dual version of the coring theory. The notion of a matrix ring context consisting of two bicomodules and two maps is introduced a
We study the q-commutative power series ring R:=k_q[[x_1,...,x_n]], defined by the relations x_ix_j = q_{ij}x_j x_i, for multiplicatively antisymmetric scalars q_{ij} in a field k. Our results provide a detailed account of prime ideal structure for a
In support variety theory, representations of a finite dimensional (Hopf) algebra $A$ can be studied geometrically by associating any representation of $A$ to an algebraic variety using the cohomology ring of $A$. An essential assumption in this theo
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are a
The elliptic algebras in the title are connected graded $mathbb{C}$-algebras, denoted $Q_{n,k}(E,tau)$, depending on a pair of relatively prime integers $n>kge 1$, an elliptic curve $E$, and a point $tauin E$. This paper examines a canonical homomorp