ترغب بنشر مسار تعليمي؟ اضغط هنا

On $q$-commutative power and Laurent series rings at roots of unity

397   0   0.0 ( 0 )
 نشر من قبل Edward S. Letzter
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are all roots of unity. In this setting, $R$ is a PI algebra, and we can apply results of De Concini, Kac, and Procesi to show that $L$ is an Azumaya algebra whose degree can be inferred from the $q_{ij}$. Our main result establishes an exact criterion (dependent on the $q_{ij}$) for determining when the centers of $L$ and $R$ are commutative Laurent series and commutative power series rings, respectively. In the event this criterion is satisfied, it follows that $L$ is a unique factorization ring in the sense of Chatters and Jordan, and it further follows, by results of Dumas, Launois, Lenagan, and Rigal, that $R$ is a unique factorization ring. We thus produce new examples of complete, local, noetherian, noncommutative, unique factorization rings (that are PI domains).



قيم البحث

اقرأ أيضاً

We study the q-commutative power series ring R:=k_q[[x_1,...,x_n]], defined by the relations x_ix_j = q_{ij}x_j x_i, for multiplicatively antisymmetric scalars q_{ij} in a field k. Our results provide a detailed account of prime ideal structure for a class of noncommutative, complete, local, noetherian domains having arbitrarily high (but finite) Krull, global, and classical Krull dimension. In particular, we prove that the prime spectrum of R is normally separated and is finitely stratified by commutative noetherian spectra. Combining this normal separation with results of Chan, Wu, Yekutieli, and Zhang, we are able to conclude that R is catenary. Following the approach of Brown and Goodearl, we also show that links between prime ideals are provided by canonical automorphisms. Moreover, for sufficiently generic q_{ij}, we find that R has only finitely many prime ideals and is a UFD (in the sense of Chatters).
178 - Li Guo , Zhongkui Liu 2007
An important instance of Rota-Baxter algebras from their quantum field theory application is the ring of Laurent series with a suitable projection. We view the ring of Laurent series as a special case of generalized power series rings with exponents in an ordered monoid. We study when a generalized power series ring has a Rota-Baxter operator and how this is related to the ordered monoid.
465 - Edward S. Letzter 2009
We study prime ideals in skew power series rings $T:=R[[y;tau,delta]]$, for suitably conditioned right noetherian complete semilocal rings $R$, automorphisms $tau$ of $R$, and $tau$-derivations $delta$ of $R$. These rings were introduced by Venjakob, motivated by issues in noncommutative Iwasawa theory. Our main results concern Cutting Down and Lying Over. In particular, under the additional assumption that $delta = tau - id$ (a basic feature of the Iwasawa-theoretic context), we prove: If $I$ is an ideal of $R$, then there exists a prime ideal $P$ of $S$ contracting to $I$ if and only if $I$ is a $delta$-stable $tau$-prime ideal of $R$. Our approach essentially depends on two key ingredients: First, the algebras considered are zariskian (in the sense of Li and Van Oystaeyen), and so the ideals are all topologically closed. Second, topological arguments can be used to apply previous results of Goodearl and the author on skew polynomial rings.
322 - Yuri Bilu , Florian Luca 2020
Let $c_1(x),c_2(x),f_1(x),f_2(x)$ be polynomials with rational coefficients. With obvious exceptions, there can be at most finitely many roots of unity among the zeros of the polynomials $c_1(x)f_1(x)^n+c_2(x)f_2(x)^n$ with $n=1,2ldots$. We estimate the orders of these roots of unity in terms of the degrees and the heights of the polynomials $c_i$ and $f_i$.
113 - Toshiyuki Tanisaki 2021
We give a proof of Lusztigs conjectural multiplicity formula for non-restricted modules over the De Concini-Kac type quantized enveloping algebra at $ell$-th root of unity, where $ell$ is an odd prime power satisfying certain reasonable conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا