ﻻ يوجد ملخص باللغة العربية
We present spectroscopic observations of the quiescent black hole binary A0620-00 with the the 6.5-m Magellan Clay telescope at Las Campanas Observatory. We measure absorption-line radial velocities of the secondary and make the most precise determination to date (K2 = 435.4 +/- 0.5 km/s). By fitting the rotational broadening of the secondary, we refine the mass ratio to q = 0.060 +/- 0.004; these results, combined with the orbital period, imply a minimum mass for the compact object of 3.10 +/- 0.04 Msun. Although quiescence implies little accretion activity, we find that the disc contributes 56 +/- 7 per cent of the light in B and V, and is subject to significant flickering. Doppler maps of the Balmer lines reveal bright emission from the gas stream-disc impact point and unusual crescent-shaped features. We also find that the disc centre of symmetry does not coincide with the predicted black hole velocity. By comparison with SPH simulations, we identify this source with an eccentric disc. With high S/N, we pursue modulation tomography of H-alpha and find that the aforementioned bright regions are strongly modulated at the orbital period. We interpret this modulation in the context of disc precession, and discuss cases for the accretion disc evolution.
We present results from simultaneous multiwavelength X-ray, radio, and optical/near-infrared observations of the quiescent black hole X-ray binary A0620-00 performed in 2013 December. We find that the Chandra flux has brightened by a factor of 2 sinc
We report on ALMA continuum observations of the black hole X-ray binary A0620-00, at an X-ray luminosity nine orders of magnitude sub-Eddington. The system was significantly detected at 98 GHz (at $44 pm 7~mu{rm Jy}$) and only marginally at 233 GHz (
[Abridged.] We present multiwavelength observations of the black hole binary system, A0620-00. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00. The observed spectrum is flat in
Photometric observations of the low-mass X-ray binary system A0620-00=V616 Mon are performed in the optical (unfiltered light, lambda_eff~6400A) and the near-infrared J and K-bands. The mean system flux, the orbital light curve shape and the flickeri
Black hole binary transients undergo dramatic evolution in their X-ray timing and spectral behaviour during outbursts. In recent years a paradigm has arisen in which soft X-ray states are associated with an inner disc radius at, or very close to, the