ﻻ يوجد ملخص باللغة العربية
We report on ALMA continuum observations of the black hole X-ray binary A0620-00, at an X-ray luminosity nine orders of magnitude sub-Eddington. The system was significantly detected at 98 GHz (at $44 pm 7~mu{rm Jy}$) and only marginally at 233 GHz ($20 pm 8~mu{rm Jy}$), about 40 days later. These results suggest either an optically thin sub-mm synchrotron spectrum, or highly variable sub-mm jet emission on month timescales. Although the latter appears more likely, we note that, at the time of the ALMA observations, A0620-00 was in a somewhat less active optical-IR state than during all published multi-wavelength campaigns when a flat-spectrum, partially self-absorbed jet has been suggested to extend from the radio to the mid-IR regime. Either interpretation is viable in the context of an internal shock model, where the jets spectral shape and variability are set by the power density spectrum of the shells Lorentz factor fluctuations. While strictly simultaneous radio-mm-IR observations are necessary to draw definitive conclusions for A0620-00, the data presented here, in combination with recent radio and sub-mm results from higher luminosity systems, demonstrate that jets from black hole X-ray binaries exhibit a high level of variability - either in flux density or intrinsic spectral shape, or both - across a wide spectrum of Eddington ratios. This is not in contrast with expectations from an internal shock model, where lower jet power systems can be expected to exhibit larger fractional variability owing to an overall decrease in synchrotron absorption.
We present results from simultaneous multiwavelength X-ray, radio, and optical/near-infrared observations of the quiescent black hole X-ray binary A0620-00 performed in 2013 December. We find that the Chandra flux has brightened by a factor of 2 sinc
Photometric observations of the low-mass X-ray binary system A0620-00=V616 Mon are performed in the optical (unfiltered light, lambda_eff~6400A) and the near-infrared J and K-bands. The mean system flux, the orbital light curve shape and the flickeri
We present spectroscopic observations of the quiescent black hole binary A0620-00 with the the 6.5-m Magellan Clay telescope at Las Campanas Observatory. We measure absorption-line radial velocities of the secondary and make the most precise determin
[Abridged.] We present multiwavelength observations of the black hole binary system, A0620-00. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00. The observed spectrum is flat in
Quiescent black hole X-ray binaries (X-ray luminosities <1e34 erg/s) are believed to be fed by hot accretion flows that launch compact, relativistic jets. However, due to their low luminosities, quiescent jets have been detected in the radio waveband