ﻻ يوجد ملخص باللغة العربية
A series of epitaxial (LaVO3)6m(SrVO3)m superlattices having the same nominal composition as La6/7Sr1/7VO3, a Mott-Hubbard insulator, were grown with pulsed-laser deposition on [001]-oriented SrTiO3 substrates, and their superlattice period was varied. When m=1, the insulating resistivity of bulk-like La6/7Sr1/7VO3 is obtained; however, an increase in the periodicity (m>=2) results in metallic samples. Comparison of the superlattice periodicity with the coherence length of charge carriers in perovskite oxide heterostructures are used to understand these observations. A filling-controlled insulator-metal transition was induced by placing a single dopant layer of SrVO3 within LaVO3 layers of varying thickness.
The structure and interface characteristics of (LaVO3)6m(SrVO3)m superlattices deposited on (100)-SrTiO3 (STO) substrate were studied using Transmission Electron Microscopy (TEM). Cross-section TEM studies revealed that both LaVO3 (LVO) and SrVO3 (SV
Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we
(LaNiO3)n/(LaMnO3)2 superlattices were grown using ozone-assisted molecular beam epitaxy, where LaNiO3 is a paramagnetic metal and LaMnO3 is an antiferromagnetic insulator. The superlattices exhibit excellent crystallinity and interfacial roughness o
Unusual metallic states involving breakdown of the standard Fermi-liquid picture of long-lived quasiparticles in well-defined band states emerge at low temperatures near correlation-driven Mott transitions. Prominent examples are ill-understood metal
Metal-ion doping can effectively regulate the metal-insulator transition temperature in $mathrm{VO}_2$. Experiments found that the pentavalent and hexavalent ion doping dramatically reduces the transition temperature while the trivalent ion doping in