ﻻ يوجد ملخص باللغة العربية
We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest.
Sharp two- and three-dimensional phase transitional magnetization curves are obtained by an iterative renormalization-group coupling of Ising chains, which are solved exactly. The chains by themselves do not have a phase transition or non-zero magnet
Exact analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with nontrivial interlayer interactions. W
We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW-ansatz by bot
We construct a class of lattices in three and higher dimensions for which the number of dimer coverings can be determined exactly using elementary arguments. These lattices are a generalization of the two-dimensional kagome lattice, and the method al
We derive exact analytic results for several four-point correlation functions for statistical models exhibiting phase separation in two-dimensions. Our theoretical results are then specialized to the Ising model on the two-dimensional strip and found