ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Hamiltonian of quantum critical chains and conformal field theories

118   0   0.0 ( 0 )
 نشر من قبل Tiago Mendes-Santos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW-ansatz by both comparing the BW Renyi entropy to the exact results, and by investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including transverse field Ising, Potts and XXZ chains. We show that the Renyi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Renyi entropies faithfully capture also the corrections to the conformal field theory scaling associated to the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW-ansatz can be also employed to predict properties of the eigenvectors of the reduced density matrices, and is thus potentially applicable to other entanglement-related quantities such as negativity.



قيم البحث

اقرأ أيضاً

We reconsider the moments of the reduced density matrix of two disjoint intervals and of its partial transpose with respect to one interval for critical free fermionic lattice models. It is known that these matrices are sums of either two or four Gau ssian matrices and hence their moments can be reconstructed as computable sums of products of Gaussian operators. We find that, in the scaling limit, each term in these sums is in one-to-one correspondence with the partition function of the corresponding conformal field theory on the underlying Riemann surface with a given spin structure. The analytical findings have been checked against numerical results for the Ising chain and for the XX spin chain at the critical point.
105 - John Cardy 2016
We investigate the behavior of the return amplitude ${cal F}(t)= |langlePsi(0)|Psi(t)rangle|$ following a quantum quench in a conformal field theory (CFT) on a compact spatial manifold of dimension $d-1$ and linear size $O(L)$, from a state $|Psi(0)r angle$ of extensive energy with short-range correlations. After an initial gaussian decay ${cal F}(t)$ reaches a plateau value related to the density of available states at the initial energy. However for $d=3,4$ this value is attained from below after a single oscillation. For a holographic CFT the plateau persists up to times at least $O(sigma^{1/(d-1)} L)$, where $sigmagg1$ is the dimensionless Stefan-Boltzmann constant. On the other hand for a free field theory on manifolds with high symmetry there are typically revivals at times $tsimmbox{integer}times L$. In particular, on a sphere $S_{d-1}$ of circumference $2pi L$, there is an action of the modular group on ${cal F}(t)$ implying structure near all rational values of $t/L$, similarly to what happens for rational CFTs in $d=2$.
We review the imaginary time path integral approach to the quench dynamics of conformal field theories. We show how this technique can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both g lobal and local quenches. We also briefly review other quench protocols. We carefully discuss the limits of applicability of these results to realistic models of condensed matter and cold atoms.
106 - M. A. Rajabpour 2009
We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). Method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices . These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we will give dilute O(n) loop models on the square lattice as examples for these loop models. We give also some proposals for WZW SU(2) models.
68 - Luca DellAnna 2019
We derive some entanglement properties of the ground states of two classes of quantum spin chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for integer ones. Since the ground states of the two models are known ana lytically, we can calculate the entanglement entropy, the negativity and the quantum mutual information exactly. We show, in particular, that these systems exhibit long-distance entanglement, namely two disjoint regions of the chains remain entangled even when the separation is sent to infinity, i.e. these systems are not affected by decoherence. This strongly entangled behavior, occurring both for colorf
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا