ترغب بنشر مسار تعليمي؟ اضغط هنا

Insulator to semiconductor transition and magnetic properties of the one-dimensional S = 1/2 system In_2VO_5

145   0   0.0 ( 0 )
 نشر من قبل Vladislav Kataev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report structural, magnetization, electrical resistivity and nuclear- and electron spin resonance data of the complex transition metal oxide In_2VO_5 in which structurally well-defined V-O chains are realized. An itinerant character of the vanadium d-electrons and ferromagnetic correlations, revealed at high temperatures, are contrasted with the insulating behavior and predominantly antiferromagnetic exchange between the localized V^{4+} S = 1/2-magnetic moments which develop below a certain characteristic temperature T* ~ 120 K. Eventually the compound exhibits short-range magnetic order at $T_SRO ~ 20 K. We attribute this crossover occurring around T* to the unusual anisotropic thermal contraction of the lattice which changes significantly the overlap integrals and the character of magnetic intra- and interchain interactions.



قيم البحث

اقرأ أيضاً

198 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are repor ted. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility , magnetization and specific heat measurements on powder samples. The magnetic susceptibility chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3.
The magnetic properties of Na2CuP2O7 were investigated by means of 31P nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin 1/T2 relaxation-rate d ata as a function of temperature T. The temperature dependence of the NMR shift K(T) is well described by the S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an intraplanar exchange of J/k_B simeq 18pm2 K and a hyperfine coupling A = (3533pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below T sim 10 K signifying some kind of transition. However, no anomaly was noticed in the bulk susceptibility data down to 1.8 K. The heat capacity appears to have a weak maximum around 10 K. With decrease in temperatures, the spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree well with the high temperature series expansion expression for a S = 1/2 2D square lattice.
We report magnetic susceptibility (chi) and heat capacity Cp measurements along with ab-initio electronic structure calculations on PbCuTe2O6, a compound made up of a three dimensional 3D network of corner-shared triangular units. The presence of ant iferromagnetic interactions is inferred from a Curie-Weiss temperature (theta_CW) of about -22 K from the chi(T) data. The magnetic heat capacity (Cm) data show a broad maximum at T^max ~ 1.15 K (i.e. T^max/theta_CW ~ 0.05), which is analogous to the the observed broad maximum in the Cm/T data of a hyper-Kagome system, Na4Ir3O8. In addition, Cm data exhibit a weak kink at T^* ~ 0.87 K. While the T^max is nearly unchanged, the T^* is systematically suppressed in an increasing magnetic field (H) up to 80 kOe. For H > 80 kOe, the Cm data at low temperatures exhibit a characteristic power-law (T^{alpha}) behavior with an exponent {alpha} slightly less than 2. Hopping integrals obtained from the electronic structure calculations show the presence of strongly frustrated 3D spin interactions along with non-negligible unfrustrated couplings. Our results suggest that PbCuTe2O6 is a candidate material for realizing a 3D quantum spin liquid state at high magnetic fields.
We have performed elastic and inelastic neutron experiments on single crystal samples of the coordination polymer compound CuF2(H2O)2(pyz) (pyz=pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements in dicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 +/- 0.03 muB/Cu. This value is significantly smaller than the single ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two dimensional Heisenberg model with a nearest neighbor magnetic exchange constant J2d = 0.934 +/-0.0025 meV. The inter-layer interaction Jperp in this compound is less than 1.5% of J2d. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by ~10.3 +/- 1.4 %. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations which include corrections for quantum fluctuations to linear spin wave theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا