ﻻ يوجد ملخص باللغة العربية
Ajax applications are designed to have high user interactivity and low user-perceived latency. Real-time dynamic web data such as news headlines, stock tickers, and auction updates need to be propagated to the users as soon as possible. However, Ajax still suffers from the limitations of the Webs request/response architecture which prevents servers from pushing real-time dynamic web data. Such applications usually use a pull style to obtain the latest updates, where the client actively requests the changes based on a predefined interval. It is possible to overcome this limitation by adopting a push style of interaction where the server broadcasts data when a change occurs on the server side. Both these options have their own trade-offs. This paper explores the fundamental limits of browser-based applications and analyzes push solutions for Ajax technology. It also shows the results of an empirical study comparing push and pull.
A new breed of web application, dubbed AJAX, is emerging in response to a limited degree of interactivity in large-grain stateless Web interactions. At the heart of this new approach lies a single page interaction model that facilitates rich interact
Quantum optimal control involves setting up an objective function that evaluates the quality of an operator representing the realized process w.r.t. the target process. Here we propose a stronger objective function which incorporates not only the tar
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the t
Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile
This work provides the first study to explore the interaction of update propagation with and without fine-grained synchronization (push vs. pull), emerging coherence protocols (GPU vs. DeNovo coherence), and software-centric consistency models (DRF0,