ﻻ يوجد ملخص باللغة العربية
This work provides the first study to explore the interaction of update propagation with and without fine-grained synchronization (push vs. pull), emerging coherence protocols (GPU vs. DeNovo coherence), and software-centric consistency models (DRF0, DRF1, and DRFrlx) for graph workloads on emerging integrated GPU-CPU systems with native unified shared memory. We study 6 graph applications with 6 graph inputs for a total of 36 workloads running on 12 system (hardware+software) configurations reflecting the above design space of update propagation, coherence, and memory consistency. We make three key contributions. First, we show that there is no single best system configuration for all workloads, motivating systems with flexible coherence and consistency support. Second, we develop a model to accurately predict the best system configuration -- this model can be used by software designers to decide on push vs. pull and the consistency model and by flexible hardware to invoke the appropriate coherence and consistency configuration for the given workload. Third, we show that the design dimensions explored here are inter-dependent, reinforcing the need for software-hardware co-design in the above design dimensions. For example, software designers deciding on push vs. pull must consider the consistency model supported by hardware -- in some cases, push maybe better if hardware supports DRFrlx while pull may be better if hardware does not support DRFrlx.
We reduce the cost of communication and synchronization in graph processing by analyzing the fastest way to process graphs: pushing the updates to a shared state or pulling the updates to a private state.We investigate the applicability of this push-
The trade-off between pull-based and push-based graph processing engines is well-understood. On one hand, pull-based engines can achieve higher throughput because their workloads are read-dominant, rather than write-dominant, and can proceed without
Ajax applications are designed to have high user interactivity and low user-perceived latency. Real-time dynamic web data such as news headlines, stock tickers, and auction updates need to be propagated to the users as soon as possible. However, Ajax
Quantum optimal control involves setting up an objective function that evaluates the quality of an operator representing the realized process w.r.t. the target process. Here we propose a stronger objective function which incorporates not only the tar
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the t