ﻻ يوجد ملخص باللغة العربية
Associated to a IFS one can consider a continuous map $hat{sigma} : [0,1]times Sigma to [0,1]times Sigma$, defined by $hat{sigma}(x,w)=(tau_{X_{1}(w)}(x), sigma(w))$ were $Sigma={0,1, ..., d-1}^{mathbb{N}}$, $sigma: Sigma to Sigma$ is given by$sigma(w_{1},w_{2},w_{3},...)=(w_{2},w_{3},w_{4}...)$ and $X_{k} : Sigma to {0,1, ..., n-1}$ is the projection on the coordinate $k$. A $rho$-weighted system, $rho geq 0$, is a weighted system $([0,1], tau_{i}, u_{i})$ such that there exists a positive bounded function $h : [0,1] to mathbb{R}$ and probability $ u $ on $[0,1]$ satisfying $ P_{u}(h)=rho h, quad P_{u}^{*}( u)=rho u$. A probability $hat{ u}$ on $[0,1]times Sigma$ is called holonomic for $hat{sigma}$ if $ int g circ hat{sigma} dhat{ u}= int g dhat{ u}, forall g in C([0,1])$. We denote the set of holonomic probabilities by ${cal H}$. Via disintegration, holonomic probabilities $hat{ u}$ on $[0,1]times Sigma$ are naturally associated to a $rho$-weighted system. More precisely, there exist a probability $ u$ on $[0,1]$ and $u_i, iin{0, 1,2,..,d-1}$ on $[0,1]$, such that is $P_{u}^*( u)= u$. We consider holonomic ergodic probabilities. For a holonomic probability we define entropy. Finally, we analyze the problem: given $phi in mathbb{B}^{+}$, find the solution of the maximization pressure problem $$p(phi)=$$
In this note, we show several variational principles for metric mean dimension. First we prove a variational principles in terms of Shapiras entropy related to finite open covers. Second we establish a variational principle in terms of Katoks entropy
In this article, we introduce a notion of relative mean metric dimension with potential for a factor map $pi: (X,d, T)to (Y, S)$ between two topological dynamical systems. To link it with ergodic theory, we establish four variational principles in te
Conformal geodesics are solutions to a system of third order of equations, which makes a Lagrangian formulation problematic. We show how enlarging the class of allowed variations leads to a variational formulation for this system with a third--order
The four equations of stellar structure are reformulated as two alternate pairs of variational principles. Different thermodynamic representations lead to the same hydromechanical equations, but the thermal equations require, not the entropy, but the
We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these