ﻻ يوجد ملخص باللغة العربية
We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for 4He and 16O. Then, we present the first converged calculations for the ground state of 40Ca within no-core model spaces including up to 16hbarOmega-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.
In a recent Letter [Phys. Rev. Lett. 99, 092501 (2007)], Roth and Navratil present an importance-truncation scheme for the no-core shell model. The authors claim that their truncation scheme leads to converged results for the ground state of 40-Ca. W
We respond to Comment on our recent letter (Phys.Rev.Lett.99:092501,2007) by Dean et al (arXiv:0709.0449).
Nuclear structure and reaction theory is undergoing a major renaissance with advances in many-body methods, strong interactions with greatly improved links to Quantum Chromodynamics (QCD), the advent of high performance computing, and improved comput
We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function meth
The existence of multi-neutron systems has always been a debatable question. Indeed, both inter-nucleon correlations and a large continuum coupling occur in these states. We then employ the ab-initio no-core Gamow shell model to calculate the resonan