ﻻ يوجد ملخص باللغة العربية
In this note the notion of infinitesimal scattering matrix is introduced. It is shown that under certain assumption, the scattering operator of a pair of trace compatible operators is equal to the chronological exponential of the infinitesimal scattering matrix and that the trace of the infinitesimal scattering matrix is equal to the absolutely continuous part of the infinitesimal spectral flow. As a corollary, a variant of the Birman-Krein formula is derived. An interpretation of Pushnitskis $mu$-invariant is given.
It has been shown recently that spectral flow admits a natural integer-valued extension to essential spectrum. This extension admits four different interpretations; two of them are singular spectral shift function and total resonance index. In this w
The spectral flow is a classical notion of functional analysis and differential geometry which was given different interpretations as Fredholm index, Witten index, and Maslov index. The classical theory treats spectral flow outside the essential spec
We show that for a Jacobi operator with coefficients whose (j+1)th moments are summable the jth derivative of the scattering matrix is in the Wiener algebra of functions with summable Fourier coefficients. We use this result to improve the known disp
This paper is a continuation of the study of spectral flow inside essential spectrum initiated in cite{AzSFIES}. Given a point $lambda$ outside the essential spectrum of a self-adjoint operator $H_0,$ the resonance set, $mathcal R(lambda),$ is an ana
We examine the spectrum of a family of Sturm--Liouville operators with regularly spaced delta function potentials parametrized by increasing strength. The limiting behavior of the eigenvalues under this spectral flow was described in a previor result