ﻻ يوجد ملخص باللغة العربية
This paper is a continuation of the study of spectral flow inside essential spectrum initiated in cite{AzSFIES}. Given a point $lambda$ outside the essential spectrum of a self-adjoint operator $H_0,$ the resonance set, $mathcal R(lambda),$ is an analytic variety which consists of self-adjoint relatively compact perturbations $H_0+V$ of $H_0,$ for which $lambda$ is an eigenvalue. One may ask for criteria for the vector $V$ to be tangent to the resonance set. Such criteria were given in cite{AzSFnRI}. In this paper we study similar criteria for the case of $lambda$ inside the essential spectrum of $H_0.$ For the case $lambda in sigma_{ess}(H_0)$ the resonance set is defined in terms of the well-known limiting absorption principle. Among the results of this paper is that the resonance set contains plenty of straight lines, moreover, given any regular relatively compact perturbation $V$ there exists a finite rank self-adjoint operator, $tilde V,$ such that the straight line $H_0 + mathbb R(V-tilde V)$ belongs to the resonance set. Another result of this paper is that inside the essential spectrum there exist plenty of transversal to the resonance set perturbations $V$ which have order $geq 2,$ in contrast to what happens outside the essential spectrum, cite{AzSFnRI}.
The spectral flow is a classical notion of functional analysis and differential geometry which was given different interpretations as Fredholm index, Witten index, and Maslov index. The classical theory treats spectral flow outside the essential spec
Given a self-adjoint operator $H_0$ and a relatively $H_0$-compact self-adjoint operator $V,$ the functions $r_j(z) = - sigma_j^{-1}(z),$ where $sigma_j(z)$ are eigenvalues of the compact operator $(H_0-z)^{-1}V,$ bear a lot of important information
It has been shown recently that spectral flow admits a natural integer-valued extension to essential spectrum. This extension admits four different interpretations; two of them are singular spectral shift function and total resonance index. In this w
In this note the notion of infinitesimal scattering matrix is introduced. It is shown that under certain assumption, the scattering operator of a pair of trace compatible operators is equal to the chronological exponential of the infinitesimal scatte
This paper is a continuation of my previous work on absolutely continuous and singular spectral shift functions, where it was in particular proved that the singular part of the spectral shift function is an a.e. integer-valued function. It was also s