ﻻ يوجد ملخص باللغة العربية
According to the method of path integral quantization for the canonical constrained system in Faddeev-Senjanovic scheme, we quantize the supersymmetrical electrodynamic system in general situation, and obtain the generating functional of Green function. Another first class constraint is obtained by making the linear combination of several primary constraints, the generator of gauge transformation is constructed, gauge transformations of the all different fields are deduced. Utilizing the consistency equation of gauge fixing condition we deduce another gauge fixing condition, and we find that the secondary constraint of the system is an Euler-Lagrange equation that is just electro-charge conversation law. Thus, we do not need to calculate the other secondary constraints step by step, and get no new constraints naturally. So, the Faddeev-Senjanovic path integral quantization of the supersymmetrical electrodynamical system is simplified.
Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-abelian Chern-Simons topological term in 2+1 dimensions, and use consistency of a gauge condition na
The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pon
We obtain a new symplectic Lagrangian density and deduce Faddeev-Jackiw (FJ) generalized brackets of the gauge invariant self-dual fields interacting with gauge fields. We further give FJ quantization of this system. Furthermore, the FJ method is com
Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives the intertwined Hamiltonians correspond to completely inte
Solitons in the Skyrme-Faddeev model on R^2xS^1 are shown to undergo buckling transitions as the circumference of the S^1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.