ﻻ يوجد ملخص باللغة العربية
The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pontryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.
By using the Hamilton-Jacobi [HJ] framework the topological theories associated with Euler and Pontryagin classes are analyzed. We report the construction of a fundamental $HJ$ differential where the characteristic equations and the symmetries of the
A topological lower bound on the Skyrme energy which depends explicity on the pion mass is derived. This bound coincides with the previously best known bound when the pion mass vanishes, and improves on it whenever the pion mass is non-zero. The new
We obtain a new symplectic Lagrangian density and deduce Faddeev-Jackiw (FJ) generalized brackets of the gauge invariant self-dual fields interacting with gauge fields. We further give FJ quantization of this system. Furthermore, the FJ method is com
We have introduced Faddeev-Niemi type variables for static SU(3) Yang-Mills theory. The variables suggest that a non-linear sigma model whose sigma fields take values in SU(3)/(U(1)xU(1)) and SU(3)/(SU(2)xU(1)) may be relevant to infrared limit of th
Solitons in the Skyrme-Faddeev model on R^2xS^1 are shown to undergo buckling transitions as the circumference of the S^1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.