ﻻ يوجد ملخص باللغة العربية
Experiments show that macroscopic systems in a stationary nonequilibrium state exhibit long range correlations of the local thermodynamic variables. In previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium free energy as a basic principle of nonequilibrium thermodynamics. We show here how an equation for the two point correlations can be derived from the Hamilton-Jacobi equation for arbitrary transport coefficients for dynamics with both external fields and boundary reservoirs. In contrast with fluctuating hydrodynamics, this approach can be used to derive equations for correlations of any order. Generically, the solutions of the equation for the correlation functions are non-trivial and show that long range correlations are indeed a common feature of nonequilibrium systems. Finally, we establish a criterion to determine whether the local thermodynamic variables are positively or negatively correlated in terms of properties of the transport coefficients.
Systems with long-range interactions display a short-time relaxation towards Quasi Stationary States (QSSs) whose lifetime increases with system size. The application of Lynden-Bells theory of violent relaxation to the Hamiltonian Mean Field model le
In self-gravitating stars, two dimensional or geophysical flows and in plasmas, long range interactions imply a lack of additivity for the energy; as a consequence, the usual thermodynamic limit is not appropriate. However, by contrast with many clai
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified pict
Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied its subsequent relaxation to equilibrium may be either impossible or take very long ti
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An