ﻻ يوجد ملخص باللغة العربية
Systems with long-range interactions display a short-time relaxation towards Quasi Stationary States (QSSs) whose lifetime increases with system size. The application of Lynden-Bells theory of violent relaxation to the Hamiltonian Mean Field model leads to the prediction of out-of-equilibrium first and second order phase transitions between homogeneous (zero magnetization) and inhomogeneous (non-zero magnetization) QSSs, as well as an interesting phenomenon of phase re-entrances. We compare these theoretical predictions with direct $N$-body numerical simulations. We confirm the existence of phase re-entrance in the typical parameter range predicted from Lynden-Bells theory, but also show that the picture is more complicated than initially thought. In particular, we exhibit the existence of secondary re-entrant phases: we find un-magnetized states in the theoretically magnetized region as well as persisting magnetized states in the theoretically unmagnetized region.
In self-gravitating stars, two dimensional or geophysical flows and in plasmas, long range interactions imply a lack of additivity for the energy; as a consequence, the usual thermodynamic limit is not appropriate. However, by contrast with many clai
Experiments show that macroscopic systems in a stationary nonequilibrium state exhibit long range correlations of the local thermodynamic variables. In previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium free energy as a bas
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified pict
Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using th