ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein Condensates

137   0   0.0 ( 0 )
 نشر من قبل Aurelien Perrin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Perrin




اسأل ChatGPT حول البحث

We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four wave mixing of de Broglie waves. We find a clear correlation between atoms with opposite momenta, demonstrating pair production in the scattering process. We also observe a Hanbury Brown and Twiss correlation for collinear momenta, which permits an independent measurement of the size of the pair production source and thus the size of the spatial mode. The back to back pairs occupy very nearly two oppositely directed spatial modes, a promising feature for future quantum optics experiments.



قيم البحث

اقرأ أيضاً

Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long m easurement times and precise readout. Ultra cold atoms can be precisely manipulated at the quantum level, held for very long times in traps, and would therefore be an ideal setting for interferometry. In this paper we discuss how the non-linearities from atom-atom interactions on one hand allow to efficiently produce squeezed states for enhanced readout, but on the other hand result in phase diffusion which limits the phase accumulation time. We find that low dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control the achievable minimal detectable interaction energy $Delta E^{rm min}$ is on the order of 0.001 times the chemical potential of the BEC in the trap. From there we have to conclude that for more precise measurements with atom interferometers more sophisticated strategies, or turning off the interaction induced dephasing during the phase accumulation stage, will be necessary.
166 - Z. Vernon , J.E. Sipe 2015
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
We investigate electromagnetically induced transparencies with two transverse Bose-Einstein condensates in four-mirror optical cavity, driven by a strong pump laser and a weak probe laser. The cavity mode, after getting split from beam splitter, inte racts with two independent Bose-Einstein Condensates transversely trapped in the arms of the cavity along $x$-axis and $y$-axis. The interaction of intra-cavity optical mode excites momentum side modes in Bose-Einstein Condensates, which then mimic as two atomic mirrors coupled through cavity field. We show that the probe field photons transition through the atomic mirrors yields to two coupled electromagnetically induced transparency windows, which only exist when both atomic states are coupled with the cavity. Further, the strength of these novel electromagnetically induced transparencies gets increased with an increase in atom-cavity coupling. Furthermore, we investigate the behavior of Fano resonances and dynamics of fast and slow light. We illustrate that the Fano line shapes and dynamics of slow light can be enhanced by strengthening the interaction between atomic states and cavity mode. Our findings not only contribute to the quantum nonlinear optics of complex systems but also provide a platform to test multi-dimensional atomic states in a single system.
Quantum systems in Fock states do not have a phase. When two or more Bose-Einstein condensates are sent into interferometers, they nevertheless acquire a relative phase under the effect of quantum measurements. The usual explanation relies on spontan eous symmetry breaking, where phases are ascribed to all condensates and treated as unknown classical quantities. However, this image is not always sufficient: when all particles are measured, quantum mechanics predicts probabilities that are sometimes in contradiction with it, as illustrated by quantum violations of local realism. In this letter, we show that interferometers can be used to demonstrate a large variety of violations with an arbitrarily large number of particles. With two independent condensates, we find violations of the BCHSH inequalities, as well as new N-body Hardy impossibilities. With three condensates, we obtain new GHZ (Greenberger, Horne and Zeilinger) type contradictions.
93 - R. Corgier , S. Amri , W. Herr 2017
We present a detailed theoretical analysis of the implementation of shortcut-to-adiabaticity protocols for the fast transport of neutral atoms with atom chips. The objective is to engineer transport ramps with durations not exceeding a few hundred mi lliseconds to provide metrologically-relevant input states for an atomic sensor. Aided by numerical simulations of the classical and quantum dynamics, we study the behavior of a Bose-Einstein condensate in an atom chip setup with realistic anharmonic trapping. We detail the implementation of fast and controlled transports over large distances of several millimeters, i.e. distances 1000 times larger than the size of the atomic cloud. A subsequent optimized release and collimation step demonstrates the capability of our transport method to generate ensembles of quantum gases with expansion speeds in the picokelvin regime. The performance of this procedure is analyzed in terms of collective excitations reflected in residual center of mass and size oscillations of the condensate. We further evaluate the robustness of the protocol against experimental imperfections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا