ﻻ يوجد ملخص باللغة العربية
We investigate electromagnetically induced transparencies with two transverse Bose-Einstein condensates in four-mirror optical cavity, driven by a strong pump laser and a weak probe laser. The cavity mode, after getting split from beam splitter, interacts with two independent Bose-Einstein Condensates transversely trapped in the arms of the cavity along $x$-axis and $y$-axis. The interaction of intra-cavity optical mode excites momentum side modes in Bose-Einstein Condensates, which then mimic as two atomic mirrors coupled through cavity field. We show that the probe field photons transition through the atomic mirrors yields to two coupled electromagnetically induced transparency windows, which only exist when both atomic states are coupled with the cavity. Further, the strength of these novel electromagnetically induced transparencies gets increased with an increase in atom-cavity coupling. Furthermore, we investigate the behavior of Fano resonances and dynamics of fast and slow light. We illustrate that the Fano line shapes and dynamics of slow light can be enhanced by strengthening the interaction between atomic states and cavity mode. Our findings not only contribute to the quantum nonlinear optics of complex systems but also provide a platform to test multi-dimensional atomic states in a single system.
We report the experimental study of a hybrid quantum solid state system comprising two-level artificial atoms coupled to cavity confined optical and vibrational modes. In this system combining cavity quantum electrodynamics and cavity optomechanics,
We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four wave mixing of de
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information proces
We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended