ﻻ يوجد ملخص باللغة العربية
Tensile tests were carried out by deforming polycrystalline samples of Al-2.5%Mg alloy at room temperature in a wide range of strain rates where the Portevin-Le Chatelier (PLC) effect was observed. The experimental stress-time series data have been analyzed using the recurrence analysis technique based on the Recurrence Plot (RP) and the Recurrence Quantification Analysis (RQA) to study the change in the dynamical behavior of the PLC effect with the imposed strain rate. Our study revealed that the RQA is able to detect the unique crossover phenomenon in the PLC dynamics.
The scaling behavior of the Portevin-Le Chatelier (PLC) effect is studied by deforming a substitutional alloy, Al-2.5%Mg and an interstitial alloy, low carbon steel (0.15%C, 0.33%Mn, 0.04%P, 0.05%S, 0.15%Si and rest Iron) at room temperature for a wi
Tensile tests have been carried out by deforming polycrystalline samples of substitutional Al-2.5%Mg alloy at room temperature at a range of strain rates. The Portevin - Le Chatelier (PLC) effect was observed. From an analysis of the experimental str
The plastic deformation of dilute alloys is often accompanied by plastic instabilities due to dynamic strain aging and dislocation interaction. The repeated breakaway of dislocations from and their recapture by solute atoms leads to stress serrations
The complexity of the Portevin-Le Chatelier effect in Al-2.5%Mg polycrystalline samples subjected to uniaxial tensile tests is quantified. Multiscale entropy analysis is carried out on the stress time series data observed during jerky flow to quantif
We present a continuous time random walk model for the Portevin-Le Chatelier (PLC) effect. From our result it is shown that the dynamics of the PLC band can be explained in terms of the Levy Walk.