ترغب بنشر مسار تعليمي؟ اضغط هنا

Group-theoretical properties of nilpotent modular categories

247   0   0.0 ( 0 )
 نشر من قبل Dmitri Nikshych
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize a natural class of modular categories of prime power Frobenius-Perron dimension as representation categories of twisted doubles of finite p-groups. We also show that a nilpotent braided fusion category C admits an analogue of the Sylow decomposition. If the simple objects of C have integral Frobenius-Perron dimensions then C is group-theoretical. As a consequence, we obtain that semisimple quasi-Hopf algebras of prime power dimension are group-theoretical. Our arguments are based on a reconstruction of twisted group doubles from Lagrangian subcategories of modular categories (this is reminiscent to the characterization of doubles of quasi-Lie bialgebras in terms of Manin pairs).



قيم البحث

اقرأ أيضاً

We first show that every group-theoretical category is graded by a certain double coset ring. As a consequence, we obtain a necessary and sufficient condition for a group-theoretical category to be nilpotent. We then give an explicit description of t he simple objects in a group-theoretical category (following Ostrik, arXiv:math/0202130) and of the group of invertible objects of a group-theoretical category, in group-theoretical terms. Finally, under certain restrictive conditions, we describe the universal grading group of a group-theoretical category.
83 - Daniel Gromada 2020
The semidirect product of a finitely generated group dual with the symmetric group can be described through so-called group-theoretical categories of partitions (covers only a special case; due to Raum--Weber, 2015) and skew categories of partitions (more general; due to Maassen, 2018). We generalize these results to the case of graph categories, which allows to replace the symmetric group by the group of automorphisms of some graph.
We propose a general method to realize an arbitrary Weyl group of Kac-Moody type as a group of birational canonical transformations, by means of a nilpotent Poisson algebra. We also give a Lie theoretic interpretation of this realization in terms of Kac-Moody Lie algebras and Kac-Moody groups.
We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.
We prove that representations of the braid groups coming from weakly group-theoretical braided fusion categories have finite images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا