ترغب بنشر مسار تعليمي؟ اضغط هنا

On the braid group representations coming from weakly group-theoretical fusion categories

83   0   0.0 ( 0 )
 نشر من قبل Dmitri Nikshych
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that representations of the braid groups coming from weakly group-theoretical braided fusion categories have finite images.



قيم البحث

اقرأ أيضاً

137 - Victor Ostrik , Zhiqiang Yu 2021
We show any slightly degenerate weakly group-theoretical fusion category admits a minimal extension. Let $d$ be a positive square-free integer, given a weakly group-theoretical non-degenerate fusion category $mathcal{C}$, assume that $text{FPdim}(mat hcal{C})=nd$ and $(n,d)=1$. If $(text{FPdim}(X)^2,d)=1$ for all simple objects $X$ of $mathcal{C}$, then we show that $mathcal{C}$ contains a non-degenerate fusion subcategory $mathcal{C}(mathbb{Z}_d,q)$. In particular, we obtain that integral fusion categories of FP-dimensions $p^md$ such that $mathcal{C}subseteq text{sVec}$ are nilpotent and group-theoretical, where $p$ is a prime and $(p,d)=1$.
161 - Sonia Natale 2015
We prove a version of the Jordan-H older theorem in the context of weakly group-theoretical fusion categories. This allows us to introduce the composition factors and the length of such a fusion category C, which are in fact Morita invariants of C.
122 - Sonia Natale 2016
We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category ${mathcal C}$ to be equivalent. This concludes the classification of such module categories.
83 - Daniel Gromada 2020
The semidirect product of a finitely generated group dual with the symmetric group can be described through so-called group-theoretical categories of partitions (covers only a special case; due to Raum--Weber, 2015) and skew categories of partitions (more general; due to Maassen, 2018). We generalize these results to the case of graph categories, which allows to replace the symmetric group by the group of automorphisms of some graph.
86 - Sonia Natale 2017
We show that the core of a weakly group-theoretical braided fusion category $C$ is equivalent as a braided fusion category to a tensor product $B boxtimes D$, where $D$ is a pointed weakly anisotropic braided fusion category, and $B cong vect$ or $B$ is an Ising braided category. In particular, if $C$ is integral, then its core is a pointed weakly anisotropic braided fusion category. As an application we give a characterization of the solvability of a weakly group-theoretical braided fusion category. We also prove that an integral modular category all of whose simple objects have Frobenius-Perron dimension at most 2 is necessarily group-theoretical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا