ترغب بنشر مسار تعليمي؟ اضغط هنا

استخدام التنقيب في المعطيات القابلة للقياس في التنبؤ بتأخر الرّحلات الجوّية

Using Scalable Data Mining for Predicting Flight Delays

1607   3   32   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة العربية
 تمت اﻹضافة من قبل Mohammad Novol




اسأل ChatGPT حول البحث

تتكرر تأخيرات الرحلات الجوية في جميع أنحاء العالم (حوالي 20٪ من رحلات الطيران تصل متأخرة أكثر من 15 دقيقة) وتقدر كلفتها السنوية بعشرات المليارات من الدولارات. يجعل هذا السيناريو التنبؤ بتأخيرات الرحلة قضية أساسية لشركات الطيران والمسافرين. الهدف الرئيسي من هذا العمل هو تطبيق تنبؤ بتأخير وصول رحلة مجدولة تبعاً للظروف الجوية. يأخذ تأخير الوصول المتوقع في الاعتبار كلاً من معلومات الرحلة (المطار الأصلي ، مطار الوجهة ، وقت المغادرة ووقت الوصول) وأحوال الطقس في المطار الأصلي والمطار المقصود وفقًا لجدول الرحلة. تم تحليل الرحلات الجوية ومجموعات المعطيات الخاصة بالملاحظات الجوية باستخدام الخوارزميات المتوازية المطبقة في برنامج MapReduce المنفّذ على منصّة سحابية. تظهر النتائج دقة عالية في التنبؤ بالتأخيرات مع عتبة معينة. على سبيل المثال ، مع عتبة تأخير مدتها 15 دقيقة ، نحقق دقة تبلغ 74.2 ٪ و 71.8 ٪ من التذكر recall على الرحلات المتأخرة ، بينما مع عتبة 60 دقيقة ، كانت الدقة 85.8 ٪ ، وتذكّر التأخر هو 86.9 ٪. علاوة على ذلك ، توضح النتائج التجريبية قابلية التوسّع للمتنبئ التي يمكن تحقيقها أثناء أداء مهام إعداد المعطيات والتنقيب بها كتطبيقات MapReduce على السحابة.



المراجع المستخدمة
https://www.researchgate.net/publication/292539590_Using_Scalable_Data_Mining_for_Predicting_Flight_Delays
قيم البحث

اقرأ أيضاً

يعرض هذا البحث دراسة مرجعية حول استخدام تقنيات الذكاء الصنعي والتنقيب عن المعطيات في أنظمة مكافحة غسيل الأموال. نقارن بين عدة منهجيات متبعة في أوراق بحثية مختلفة بهدف تسليط الضوء على تطبيقات الذكاء الصنعي في حل مشاكل الحياة الواقعية.
يعرض هذا البحث آليات تطبيق تقنيات التنقيب في المعطيات و حلول ذكاء الأعمال على المعطيات الموجودة ضمن مكتبة الجامعة العربية الدولية بعد ربطها بمعطيات الطلاب الموجودة ضمن النظام الأكاديمي الخاص بالجامعة، و الإجابة عن مجموعة من الأسئلة و الاستفسارات ا لتي من الممكن أن تؤثر في سير العمل ضمن المؤسسة التعليمية بوجه عام و ضمن مكتبة الجامعة بوجه خاص، و تقديم بعض الحلول لمساعدة المكتبة في تطوير خدماتها، و تطوير آليات العمل ضمنها، إضافة إلى تحديد بعض المؤشرات المتعلقة بدور موارد المعلومات في تطوير العملية التعليمية.
نقدم في بحثنا طريقة بسيطة, لتمييز صور المحارف المكتوبة يدوياً بالاعتماد على عمليات التنقيب التنبئي. و ذلؾ من خلال استخراج إحداثيات النقاط السوداء من صور المحارف الثنائية اللون (أسود, أبيض) المستخدمة في مراحل التدريب و الاختبار. و تخزينها في قاعدة بيانات, و فق بنية مناسبة لعمليات التنقيب التنبئي (بيانات تدريب و بيانات اختبار). و من ثم استخدام بيانات التدريب المستخرجة لبناء نموذج تنبئي يساعد على تمييز صور الاختبار, اعتماداً على خصائصها المستخرجة. و قد أجرينا عدة اختبارات على عينات مختلفة من صور المحارف المكتوبة يدوياً, و حصلنا على نتائج دقيقة, ضمن الشروط المطلوبة.
التطورات في احتساب دقة الموقع الجغرافي والحوسبة المتنقلة ولدت كمية ضخمة من البيانات عن المسارات المكانية والتي تمثل المسارات الحركية لأغراض متنوعة متحركة مثل: اشخاص، مركبات، حيوانات، تم طرح العديد من التقنيات لمعالجة وادارة وتعدين هذه المعلومات في ال عقود الماضية من اجل تعزيز مجال واسع من التطبيقات، في هذا المقال، سنجري بشكل رئيسي مسحاً منهجياً على دراسة تعدين البيانات، سنقدم نظرة عامة عن هذا المجال والعناوين الرئيسية عن مواضيع البحث، وذلك باتباع خطة تبدأمن اشتقاق بيانات المسار ومن ثم تجهيزها (preprocessing) الى ادارتها لتنتهي بعدد من مهام التعدين ( تعدين انماط المسارات، الكشف الخارجي، تصنيف المسار)، هذه الدراسة تبحث في الاتصالات، الارتباطات، والاختلافات بين التقنيات الموجودة، كما يقدم الطرق التي تحول المسارات الى بنية بيانات أخرى، مثل: رسومات بيانية، مصفوفات، tensors ، حيث يمكننا زيادة عدد تقنيات التعدين والتعلم الآلي التي يمكن تطبيقها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا