تعد دراسة استقرار المنشآت البحرية من المواضيع الهامة جداً و ذلك لأنها تتضمن الأخذ بعين الاعتبار الكثير من البارامترات من أجل الوصول إلى التصميم الهندسي الآمن و الاقتصادي لمثل هذه المنشآت.
تتضمن الدراسة الحالية تقنية شبكة عصبية اصطناعية لتوقع عدد الاستقرار للمكاسر الركامية, حيث تم بناء شبكة عصبية اعتماداً على البارامترات المؤثرة على استقرار المكسر, و من ثم استخدمت خوارزمية الانتشار العكسي للخطأ في تدريب الشبكة.
تبين نتيجة الدراسة أن هناك ارتباطاً كبيراً بين القيم المحسوبة من الشبكة و القيم المأمولة (المحسوبة من علاقة van der meer) حيث بلغ معامل الارتباط 0.88.
The stability analysis of coastal structure is very important because it involves many
design parameter s to be considered for the save and economical design of structure.
In the present study neural network technique is adopted to predict the stability
number of rubble mound breakwater.
One model is constructed based on the parameters which influence on the stability of
rubble mound breakwater, the back propagation algorithm is used in training network .
Agood correlation is obtained between network predicted stabilityand estimated
ones.
Correlation coefficient=0.88.
المراجع المستخدمة
MANDAL,S; RAO.S; MANJUNATHA,R.Y; KIM.D.H. Stability Analysis Rubble Mound Breakwater Using ANN, fourth Indian National Conference on Harbour and Ocean Engineering, 2007, 551-560
MANDAL,S; RAO.S; MANJUNATHA,R.Y; KIM.D.H. Stability prediction of Berm Breakwater Using Neural Networks, Dubai, 2008, 1-11
MEER,V.D. Rock Slops and Gravel Beaches Under Wave attack, phD Thesis, Delft University of Technology, 1988, 214
تعتبر الأمطار من الظواهر غير الخطية المعقدة، و التي تتطلب النمذجة الرياضية غير الخطية لغرض
التنبؤ بها. هذه الدراسة تقارن أداء التنبؤ بالأمطار ليوم مقدماً، حيث وضعت اثنين من نماذج الشبكات
العصبونية (ذات التغذية الأمامية) للتنبؤ بأمطار يومية متتالية
التنبّؤ بالطقس و خاصةً الأمطار، هي واحدة من المهام العملية الأكثر تحدياً و أهمية، و التي تقوم بها خدمات الأرصاد الجوية في جميع أنحاء العالم، علاوة على كونه إجراء معقد يتطلب مجالات متخصصة و متعددة من الخبرات.
في هذه الورقة، أقترح نموذج الشبكات العصبي
تستخدم الشبكة العصبية الصنعية طريقة تعلم استقرائي، و تتطلب بشكل عام أمثِلة
لبيانات التدريب، بينما تستخدم الخوارزمية الجينية تعلم اقتطاعي، و تتطلب تابع هدف. لقد تمّ
تنظيم التعاون بين هاتين التقانتين في دراستنا هذه بغرض تعزيز أداء كل تقانة من خلال بن
قمنا من خلال هذا البحث بتصميم برنامج يهدف إلى تحديد النقاط الحرجة التي يمكن أن
تسبب إنهيار التوتر، و بناء شبكة عصبونية ضمن بيئة برمجيات ماتلاب مهمتها التنبؤ بقيمة
الاستطاعة العظمى التي يمكن نقلها على نظام القدرة الكهربائية في ظروف انهيار التوتر
دو
يعتبر التبخر- نتح أحد المكونات الهامة في الدورة الهيدرولوجية، و تعد القدرة على
التنبؤ الدقيق بقيم هذه الظاهرة من العوامل الهامة في العديد من تطبيقات الموارد المائية.
تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري, باستخدام الشبكات العصبية الاصطناعية و نظام الاستدلال الضبابي.