يعتبر التبخر- نتح أحد المكونات الهامة في الدورة الهيدرولوجية، و تعد القدرة على
التنبؤ الدقيق بقيم هذه الظاهرة من العوامل الهامة في العديد من تطبيقات الموارد المائية.
تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري, باستخدام الشبكات العصبية الاصطناعية و نظام الاستدلال الضبابي.
Evapotranspiration is an important component of the
hydrologic cycle, and the accurate prediction of this parameter is
very important for many water resources applications. Thus, the
aim of this study is prediction of monthly reference
evapotranspiration using Artificial Neural Networks (ANNs) and
fuzzy inference system (FIS).
المراجع المستخدمة
AL-ABBODI, A. H. 2014. Evaporation Estimation Using Adaptive Neuro-Fuzzy Inference System and Linear Regression. Eng. &Tech. Journal, Vol.32, Part(A), No.10, 2465-2474
JADEJA, V, 2011. Artificial neural network estimation of Reference Evapotranspiration from pan evaporation in a semiarid environment. National Conference on Recent Trends in Engineering & Technology
KARIYAMA, I. D, 2014. Temperature-Based Feed-Forward Backpropagation Artificial Neurl Network For Estimation Reference Crop Evapotranspiration In The Upper West Region. International Journal of Scientific & Technology Research, Volume 3, Issue 8, 357-364
تُعتبر القدرة على التقدير والتنبّؤ الدقيق بالظواهر الهيدرولوجيّة من العوامل الأساسيّة في تنمية وإدارة الموارد المائيّة، ووضع الخطط المائيّة المستقبليّة وفق سيناريوهات التغيّرات المناخيّة المختلفة، ويعد التبخّر نتح أحد أهم العوامل في الدورة الهيدرولوج
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة م
يشكّل التبخر-نتح أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره انطلاقاً من علاقات تجريبية تعتمد على بيانات عناصر المناخ، و تتضمن تلك التقديرات أخطاء متنوّعة بسبب عمليات التقريب. و يهدف البحث إلى تقدي
في هذه البحث تم تصميم شبكة عصبية اصطناعية تعتمد على خوارزمية الانتشار الخلفي للخطأ (BPNN) لتشخيص أورام الثدي و كذلك تصميم مصنف للتشخيص باستخدام نظام الاستدلال العصبي الضبابي المتكيف (ANFIS) و قد اعتمدت كلا الدراستين على السمات البنيوية للخزع الموجودة
تعتبر أنظمة التعليق من أهم المكونات في المركبات الحديثة كما أنها تعد أهم عوامل الراحة و الأمان فيها لذلك كان لابد من تأمين متحكم يضمن التفاعل الكامل بين مكونات نظام التعليق و يساعد في اتخاذ القرارات الدقيقة في الوقت المناسب, يقترح البحث تصميم متحكم ب