ترغب بنشر مسار تعليمي؟ اضغط هنا

LM-CRIDIC: نماذج اللغة لتصحيح الخطأ النحوي غير المعدل

LM-Critic: Language Models for Unsupervised Grammatical Error Correction

619   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يتطلب تصحيح الأخطاء النحوية (GEC) مجموعة من أزواج الجملة الجملة / النحوية المسمى للتدريب، ولكن الحصول على مثل هذه التوضيحية يمكن أن تكون باهظة الثمن. في الآونة الأخيرة، أظهر إطار عمل استراحة IT-IT (BIFI) نتائج قوية على تعلم إصلاح برنامج مكسور دون أي أمثلة معدنية، ولكن هذا يعتمد على ناقد مثالي (على سبيل المثال، مترجم) يعيد ما إذا كان المثال صحيحا أم لا، والتي غير موجودة لمهمة GEC. في هذا العمل، نظهر كيفية الاستفادة من نموذج اللغة المسبق (LM) في تحديد LM-RIDIC، الذي يحكم جملة على النحو الحكم إذا قام LM بتعيينه احتمال أعلى من اضطراباتها المحلية. نحن نطبق هذا LM-CRERTIC و BIFI جنبا إلى جنب مع مجموعة كبيرة من الجمل غير المسبقة إلى Bootstrap أزواج حقيقية غير رسمية / نحوية لتدريب مصحح. نقيم نهجنا على مجموعات بيانات GEC على مجالات متعددة (CONLL-2014، BEA-2019، GMEG-WIKI و GMEG-Yahoo) وإظهار أنه يتفوق على الأساليب الموجودة في كل من الإعداد غير المقترح (+7.7 F0.5) والإعداد الإشرافي (+0.5 F0.5).



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يعاني تصحيح الخطأ النحوي (GEC) من عدم وجود بيانات متوازية كافية. اقترحت دراسات حول GEC عدة طرق لتوليد بيانات زائفة، والتي تشمل أزواج من الجمل النحوية والنصيع بشكل مصطنع. حاليا، فإن النهج السائد لتوليد بيانات الزائفة هو الترجمة مرة أخرى (BT). وقد استخ دمت معظم الدراسات السابقة باستخدام BT نفس الهندسة المعمارية لكل من نماذج GEC و BT. ومع ذلك، فإن نماذج GEC لها اتجاهات تصحيح مختلفة اعتمادا على بنية نماذجها. وبالتالي، في هذه الدراسة، نقارن اتجاهات تصحيح نماذج GEC المدربة على البيانات الزائفة التي تم إنشاؤها بواسطة ثلاث نماذج BT مع بنية مختلفة، وهي المحول، CNN، و LSTM. تؤكد النتائج أن ميول التصحيح لكل نوع خطأ مختلفة لكل طراز BT. بالإضافة إلى ذلك، يمكننا التحقيق في ميول التصحيح عند استخدام مجموعة من البيانات الزائفة الناتجة عن نماذج BT مختلفة. نتيجة لذلك، نجد أن مجموعة من نماذج BT المختلفة تتحسن أو تحسن أداء كل نوع من نوع الخطأ مقارنة باستخدام نموذج BT واحد مع بذور مختلفة.
يهدف تصحيح الخطأ النحوي (GEC) إلى تصحيح أخطاء الكتابة ومساعدة المتعلمين في اللغة على تحسين مهاراتهم في الكتابة. ومع ذلك، تميل نماذج GEC الحالية إلى إنتاج تصحيحات زائفة أو تفشل في اكتشاف الكثير من الأخطاء. يعد نموذج تقدير الجودة ضروريا لضمان أن يحصل ا لمتعلمون على نتائج GEC دقيقة وتجنب مضللة من الجمل المصححة بشكل سيء. يمكن أن تولد نماذج GEC المدربة جيدا العديد من الفرضيات عالية الجودة من خلال فك التشفير، مثل البحث الشعاع، والتي توفر أدلة GEC القيمة ويمكن استخدامها لتقييم جودة GEC. ومع ذلك، تهمش النماذج الحالية أدلة GEC المحتملة من فرضيات مختلفة. تقدم هذه الورقة شبكة التحقق العصبية (Vernet) لتقدير جودة GEC مع فرضيات متعددة. تحدد Vernet تفاعلات بين الفرضيات مع رسم بياني للمنطق وإجراء نوعين من آليات الاهتمام لنشر أدلة GEC للتحقق من جودة الفرضيات التي تم إنشاؤها. تظهر تجاربنا على أربع مجموعات بيانات GEC أن Vernet يحصل على أداء اكتشاف الأخطاء النحوية الحديثة، وتحقق أفضل نتائج تقدير الجودة، وتحسين أداء GEC بشكل كبير من خلال فرضيات إعادة النشر. تتوفر جميع رموز البيانات والمصادر في https://github.com/thunlp/vernet.
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة هذا العيب، نعتمد نهجا للتعلم ونقله واقتراح خط أنابيب التدريب الذي يتيح نماذج اللغة المدربة مسبقا لتوليد أول اتصالات عالية الجودة في إعداد غير محدد. تتكون وصفة لدينا من تكيف المهام والإشراف الذاتي وخوارزمية فك التشفير الجديدة المسماة حظر ديناميكي (DB). لفرض نموذج سطح متغاضي عن الإدخال، كلما أن نموذج اللغة ينبعث رمز رمزي موجود في تسلسل المصدر، يمنع DB النموذج من إخراج الرمز المميز اللاحق للمصدر خطوة الجيل التالي. نظرا للتقييمات التلقائية والإنسانية أن نهجنا يحقق أداء حديثة من كل من زوج السؤال Quora (QQP) ومجموعات بيانات Paranmt قوية لتحويل المجال بين مجموعة بيانات التوزيعات المميزة. نحن نوضح أيضا تحويلاتنا النموذجية إلى إعادة صياغة لغات أخرى دون أي رسوم إضافية.
تحقق هذه الورقة في كيفية تصحيح أخطاء النص الصينية مع أنواع من الأحرف الخاطئة والمفقودة والمتغمة، وهي شائعة للمتحدثين الأصليين الصينيين.يمكن لمعظم النماذج الموجودة على الإطار الصحيح على الكشف عن تصحيح الأحرف الخاطئة، ولكن لا يمكن التعامل مع الأحرف الم فقودة أو الزائدة بسبب التناقض بين المدخلات والمخرجات النموذجية.على الرغم من أن أساليب العلامات المستندة إلى SEQ2SEQ أو التسلسل تقدم حلولا لأنواع الخطأ الثلاثة وحققت نتائج جيدة نسبيا في سياق اللغة الإنجليزية، فإنها لا تؤدي بشكل جيد في السياق الصيني وفقا تجاربنا.في عملنا، نقترح إطارا جديدا للكشف عن المحاذاة على المكتشفة التي يمكن أن تعالج كل من المواقف المحاذاة وغير المحاذاة ويمكن أن تكون بمثابة نموذج ابدأ بارد عند عدم توفر بيانات التعليق التوضيحي.تظهر النتائج التجريبية على ثلاث مجموعات بيانات أن طريقتنا فعالة وتحقق أداء أفضل من أحدث النماذج المنشورة.
تستند النجاح الأكثر نجاحا إلى الترجمة الآلية العصبية (NMT) عند توفر بيانات التدريب أحادية غير متوفرة فقط، تسمى الترجمة الآلية غير المدعية، على الترجمة الخلفية حيث يتم إنشاء ترجمات صاخبة لتحويل المهمة إلى واحدة تحت إشراف.ومع ذلك، فإن الترجمة الخلفية ه ي باهظة الثمن بشكل حسابي وغير فعال.يستكشف هذا العمل نهجا جديدا وفعالا ل NMT غير المدعوم.محول، تهيئته مع أوزان نموذج اللغة عبر اللغات، يتم ضبطه بشكل جيد على بيانات أحادية الأجل من اللغة المستهدفة من خلال التعلم المشترك على إعادة صياغة وإنهاء هدف AutoNCoder.تتم التجارب على مجموعات بيانات WMT للغة الألمانية والفرنسية والإنجليزية والرومانية الإنجليزية.النتائج تنافسية نماذج NMT الأساسية القوية غير الخاضعة للرقابة الوطنية، خاصة لغلا المصادر ذات الصلة عن كثب (الألمانية) مقارنة بأكثر اعتراضا (رومانية، فرنسية)، بينما تتطلب وقتا أقل من حجم التدريب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا