على الرغم من التحسينات المستمرة في جودة الترجمة الآلية، تظل الترجمة التلقائية الشعر مشكلة صعبة بسبب عدم وجود شاعرية موازية مفتوحة، وبالنسبة إلى التعقيدات الجوهرية المعنية في الحفاظ على الدلالات والأناقة والطبيعة المجازية للشعر. نقدم إجراءات تجريبية لترجمة الشعر على طول عدة أبعاد: 1) حجم وأسلوب بيانات التدريب (Poetic vs. غير شعري)، بما في ذلك إعداد الصفر بالرصاص؛ 2) ثنائي اللغة مقابل التعلم متعدد اللغات؛ و 3) نماذج لغة خاصة للعائلة مقابل نماذج عائلية مختلطة. لإنجاز ذلك، نساهم في مجموعة بيانات متوازية من ترجمات الشعر لعدة أزواج اللغة. تبين نتائجنا أن ضبط التركيب المتعدد اللغات على النص الشعري يتفوق بشكل كبير على النص المتعدد اللغوي على النص غير الشعري الذي هو 35X أكبر في الحجم، كلاهما من حيث المقاييس التلقائية (BLEU، Bertscore، المذنب) ومقاييس التقييم البشري مثل الإخلاص ( معنى والأناقة الشعرية). علاوة على ذلك، فإن ضبط التردد متعدد اللغات على البيانات الشعرية تتفوق على ضبط ثنائي اللغة على البيانات الشعرية.
Despite constant improvements in machine translation quality, automatic poetry translation remains a challenging problem due to the lack of open-sourced parallel poetic corpora, and to the intrinsic complexities involved in preserving the semantics, style and figurative nature of poetry. We present an empirical investigation for poetry translation along several dimensions: 1) size and style of training data (poetic vs. non-poetic), including a zero-shot setup; 2) bilingual vs. multilingual learning; and 3) language-family-specific models vs. mixed-language-family models. To accomplish this, we contribute a parallel dataset of poetry translations for several language pairs. Our results show that multilingual fine-tuning on poetic text significantly outperforms multilingual fine-tuning on non-poetic text that is 35X larger in size, both in terms of automatic metrics (BLEU, BERTScore, COMET) and human evaluation metrics such as faithfulness (meaning and poetic style). Moreover, multilingual fine-tuning on poetic data outperforms bilingual fine-tuning on poetic data.
المراجع المستخدمة
https://aclanthology.org/
شهدت السنوات الأخيرة ازدهارا من أعمال جيل المفاتيح العصبي (KPG)، بما في ذلك إصدار العديد من البيانات واسعة النطاق ومجموعة من النماذج الجديدة لمعالجةها.زاد أداء النموذج على مهام KPG بشكل كبير مع أبحاث التعلم العميق المتطور.ومع ذلك، يفتقر إلى مقارنة شا
من المفترض أن تكون المعلومات المتسلسلة، A.AK.A.، أمر ضروري لمعالجة تسلسل مع الشبكة العصبية المتكررة أو تشفير الشبكة العصبية المتكررة.ومع ذلك، هل من الممكن ترميز اللغات الطبيعية دون أوامر؟بالنظر إلى كيس من الكلمات من جملة مضطربة، قد لا يزال البشر قادر
في الترجمة الآلية المتزامنة، والعثور على وكيل مع تسلسل العمل الأمثل للقراءة والكتابة التي تحتفظ بمستوى عال من جودة الترجمة مع التقليل من التأخر المتوسط في إنتاج الرموز المستهدفة لا يزال مشكلة صعبة للغاية. نقترح نهج تعليمي تحت إشراف رواية لتدريب وكي
تعمل العديد من نماذج NLP على تسلسل الرموز الرموز الفرعية التي تنتجها قواعد التزخم المصنوعة يدويا وخوارزميات التعريفي للكلمة الفرعية.بديل عالمي بسيط هو تمثيل كل نص محوسب كسلسلة من البايتات عبر UTF-8، وضبط الحاجة إلى طبقة تضمين نظرا لأن هناك عدد أقل من
تقدم الورقة تجارب في الترجمة الآلية العصبية مع القيود المعجمية في لغة غنية مورمية.على وجه الخصوص، نقدم طريقة واستنادا إلى فك التشفير المقيد والتي تتعامل مع الأشكال المصدرة للإدخالات المعجمية ولا تتطلب أي تعديل بيانات التدريب أو الهندسة المعمارية النم