ترغب بنشر مسار تعليمي؟ اضغط هنا

الكلاسيكية: التعلم المستمر والتناقض بمهام تصنيف معنويات الجانب

CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks

307   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تدرس هذه الورقة التعلم المستمر (CL) من تسلسل مهام تصنيف معنويات الجانب (ASC) في إعداد CL معين يسمى التعلم الإضافي للمجال (DIL).كل مهمة هي من مجال أو منتج مختلف.يعد إعداد DIL مناسبا بشكل خاص للأشعة السوداء لأنه في اختبار لا يحتاج النظام إلى معرفة المهمة / المجال التي تنتمي إليها بيانات الاختبار.لمعرفةنا، لم تتم دراسة هذا الإعداد من قبل للحصول على ASC.تقترح هذه الورقة نموذجا جديدا يسمى الكلاسيكية.الجدة الرئيسية هي طريقة تعلم مستمرة مناقصة تمكن من نقل المعرفة عبر المهام وتقطير المعرفة من المهام القديمة إلى المهمة الجديدة، مما يلغي الحاجة إلى معرفات المهام في الاختبار.النتائج التجريبية تظهر فعالية عالية من الكلاسيكية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تدرس هذه الورقة التعلم المستمر (CL) بتسلسل مهام تصنيف معنويات الجانب (ASC).على الرغم من اقتراح بعض تقنيات CL لتصنيف معنويات المستندات، إلا أننا لسنا على علم بأي عمل CL على ASC.يجب أن يتعلم نظام CL الذي يتعلم تدريجيا سلسلة من مهام ASC المشكلتين التالي ين: (1) نقل المعرفة المستفادة من المهام السابقة إلى المهمة الجديدة للمساعدة في تعلم نموذج أفضل، و (2) الحفاظ على أداء النماذجالمهام السابقة بحيث لا تنسى.تقترح هذه الورقة نموذجا قائم على شبكة كبسولة رواية يسمى B-CL لمعالجة هذه المشكلات.ب-CL يحسن بشكل ملحوظ أداء ASC على كل من المهمة الجديدة والمهام القديمة عبر نقل المعرفة للأمام والخلف.يتم إثبات فعالية B-CL من خلال تجارب واسعة.
أظهر العمل الأخير على تصنيف المعنويات على مستوى جانب جانب الجسبي فعالية دمج الهياكل النحوية مثل أشجار الاعتمادية مع شبكات عصبية رسم بيانية (GNN)، ولكن هذه الأساليب عادة ما تكون عرضة للخطأ في التحليل. لتحسين الاستفادة من المعلومات الأساسية في مواجهة ا لأخطاء التي لا مفر منها، نقترح تقنية رسم بياني بسيطة ولكنها فعالة، Grapmerge، للاستفادة من التنبؤات من المحللين المختلفين. بدلا من تعيين مجموعة واحدة من المعلمات النموذجية إلى كل شجرة التبعية، نقدم أولا علاقات التبعية من يوزعات مختلفة قبل تطبيق GNNS على الرسم البياني الناتج. يسمح هذا نماذج GNN قوية بتحليل الأخطاء دون أي تكلفة حسابية إضافية، ويساعد على تجنب التغلب على التغلب والتجول من تكديس طبقة GNN عن طريق إدخال المزيد من التوصيلية في الرسم البياني للفرقة. تظهر تجاربنا في مهمة Semeval 2014 Task 4 و ACL 14 Twitter أن نموذج Graphmerge الخاص بنا ليس فقط تفوق النماذج مع شجرة الاعتماد الفردي، ولكن أيضا يدق نماذج فرقة أخرى دون إضافة معلمات النموذج.
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا لنسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال موجهة نحو المهام مع أن يتم تعلم 37 نطما بشكل مستمر في إعدادات التعلم المعدلة والنهاية. بالإضافة إلى ذلك، نقوم بتنفيذ ومقارنة خطوط أساسيات التعلم المستمرة المتعددة، ونقترحنا طريقة معمارية بسيطة ولكنها فعالة تعتمد على المحولات المتبقية. نشير أيضا إلى أن الأداء العلوي للتعلم المستمر يجب أن يكون يعادل التعلم المتعدد المهام عند توفر البيانات من جميع المجال في وقت واحد. توضح تجاربنا أن الطريقة المعمارية المقترحة وإجراءات استراتيجية تستند إلى إعادة التشغيل بسيطة تؤدي بشكل أفضل، من خلال هامش كبير، مقارنة بتقنيات التعلم المستمرة الأخرى، وأسوأ قليلا قليلا من العلوي المتعدد التعلم العلوي أثناء كونه 20x بشكل أسرع في تعلم النطاقات الجديدة. نحن نبلغ أيضا العديد من المفاضلات من حيث استخدام المعلمة وحجم الذاكرة ووقت التدريب، وهي مهمة في تصميم نظام حوار موجه نحو المهام. يتم إصدار المعيار المقترح لتعزيز المزيد من البحث في هذا الاتجاه.
يهدف تصنيف المعنويات على مستوى الجانب (ALSC) إلى تحديد قطبية المعنويات من جانب محدد في جملة. ESSC عبارة عن إعداد عملي في تحليل المعنويات المستندة إلى جانب الجسيم بسبب عدم وجود مصطلح الرأي اللازم، لكنه فشل في تفسير سبب اشتقاق قطبية المعنويات للجانب. ل معالجة هذه المشكلة، تعمل الأعمال الحديثة من تشفير المحولات التي تم تدريبها مسبقا على ELSC لاستخراج شجرة التبعية التي تركز على جانب جانب الجوانب التي يمكن أن تحدد كلمات الرأي. ومع ذلك، فإن كلمات الرأي المستحثة توفر فقط جديلة بديهية أقل بكثير من الترجمة الترجمة الشاملة على مستوى الإنسان. بالإضافة إلى ذلك، يميل التشفير المدرب مسبقا إلى استيعاب المشاعر الجوهرية في الجانب، مما تسبب في تحيز المعنويات وبالتالي يؤثر على أداء النموذج. في هذه الورقة، نقترح إطارا لتعليم تمثيل جانبي لمكافحة التحيز. يزيل أولا تحيز المعنويات في الجانب التضمين من خلال التعلم الخصم ضد المعنويات السابقة للجوانب. بعد ذلك، تقوم بمحاطة مرشحي الرأي المقطرين بالجانب من خلال نمذجة التبعية المستندة إلى SPAN لتسليط الضوء على شروط الرأي القابلة للتفسير. إن طريقتنا تحقق أداء جديد لحساب الفن في خمسة معايير، مع إمكانية استخراج الرأي غير المزعوم.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا