مهمة تقصير صورة المقال الإخباري يهدف إلى توليد تعليق وصفية وغنية بالمعلومات لصور المقالة الإخبارية.على عكس التسميات التوضيحية التقليدية التي تصف ببساطة محتوى الصورة بمصطلحات عامة، تتبع تعليق الصور الإخبارية إرشادات صحفية وتعتمد اعتمادا كبيرا على الكيانات المسماة لوصف محتوى الصورة، غالبا ما يرسم السياق من المقالة بأكملها.في هذا العمل، نقترح نهجا جديدا لهذه المهمة، بدافع من إرشادات التسمية التوضيحية التي يتبعها الصحفيون.نهجنا، المبادئ التوجيهية الصحفية تدرك صورة أخبار التسمية التوضيحية (Joganic)، ترفد بنية التسميات التوضيحية لتحسين جودة الجيل وتوجيه تصميم التمثيل الخاص بنا.النتائج التجريبية، بما في ذلك دراسات التفصيل التفصيلية، على مجموعة من مجموعات بيانات واسعة النطاق للجمهورية على نطاق واسع أن جوجاني يتفوق بشكل كبير على الأساليب الحديثة على حد سواء على جيل التسمية التوضيحية ومقاييس الكيانية المسمى.
The task of news article image captioning aims to generate descriptive and informative captions for news article images. Unlike conventional image captions that simply describe the content of the image in general terms, news image captions follow journalistic guidelines and rely heavily on named entities to describe the image content, often drawing context from the whole article they are associated with. In this work, we propose a new approach to this task, motivated by caption guidelines that journalists follow. Our approach, Journalistic Guidelines Aware News Image Captioning (JoGANIC), leverages the structure of captions to improve the generation quality and guide our representation design. Experimental results, including detailed ablation studies, on two large-scale publicly available datasets show that JoGANIC substantially outperforms state-of-the-art methods both on caption generation and named entity related metrics.
المراجع المستخدمة
https://aclanthology.org/
نقترح أن نقترح Captioner أخبار البصرية، وهو نموذج كيائن كيائن لمهمة تقسيم صورة الأخبار. نقدم أيضا Visual News، وهو معيار واسع النطاق يتكون من أكثر من مليون صورة إخبارية إلى جانب المقالات الإخبارية المرتبطة، وتستياؤ الصور، ومعلومات المؤلف، والبيانات ا
محتوى الويب الحديث - المقالات الإخبارية، منشورات المدونة، الموارد التعليمية، كتيبات التسويق - هي في الغالب متعددة الوسائط.سمة ملحوظة هي إدراج وسائل الإعلام مثل الصور الموضوعة في مواقع ذات مغزى ضمن سرد نصي.في أغلب الأحيان، مصحوبة مثل هذه الصور بتعليقا
بناء نظام ذكي يقوم بالتعرف على الأصناف الموجودة في صورة وتوليد توصيف نصي لهذه الأغراض الموجودة في الصورة.
استخدمنا الشبكات العصبونية الملتفة Convolutional Neural Networks للقيام بعملية استخلاص الأصناف الموجودة في الصورة، وأدخلنا هذه الأصناف إلى شبكة
تعتمد مطورو نماذج جيل النص على مقاييس التقييم الآلي كمستقلة للتقييمات اليدوية البطيئة والمكلفة. ومع ذلك، كافحت مقاييس تقسيم الصور لإعطاء تقديرات مستفادة دقيقة للنجاح الدلالي والبراغماتي لنص الإخراج. نحن نتطلع إلى هذا الضعف عن طريق إدخال أول متري تعلم
في هذه الورقة، نهدف إلى معالجة التحديات المحيطة بترجمة النص الصيني القديم: (1) الفجوة اللغوية بسبب الاختلاف في عصائر النتائج في الترجمات التي هي فقيرة في الجودة، و (2) تفتقد معظم الترجمات المعلومات السياقيةغالبا ما يكون هذا أمرا ضروريا للغاية لفهم ال