ترغب بنشر مسار تعليمي؟ اضغط هنا

توليد السؤال الذاتي المحتوي على الذات والتركز على الأزواج عن طريق التعلم المقلد مكافأة

Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning

282   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

بدافع من جيل السؤال المقترح في أنظمة توصية أخبار المحادلات، نقترح نموذجا لتوليد أزواج الإجابات السؤال (أزواج ضمان الجودة) مع أسئلة ذاتية التركيز ذاتي ومقيد الطول، إجابات تلخص المادة.نبدأ بجمع مجموعة بيانات جديدة من المقالات الإخبارية مع أسئلة كعناوين واقترانها مع ملخصات طول متفاوتة.يتم استخدام هذه البيانات هذه البيانات لتعلم ملخصات إنتاج نموذج توليد QA للزوج كجابات توازن الرصيد بالإيجاز مع الاكتفاء بالاشتراك مع أسئلتها المقابلة.ثم نعزز عملية توليد زوج ضمان الجودة مع وظيفة مكافأة مختلفة لتخفيف تحيز التعرض، وهي مشكلة شائعة في توليد اللغة الطبيعية.يظهر كل من المقاييس التلقائية والتقييم البشري هذه أزواج ضمان الجودة بنجاح التقاط القابس المركزي للمقالات وتحقيق دقة عالية للإجابة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

توليد أزواج الإجابة ذات الجودة العالية هي مهمة صلبة ولكنها ذات مغزى. على الرغم من أن الأعمال السابقة قد حققت نتائج رائعة حول توليد الأسئلة على دراية بالإجابة، فمن الصعب تطبيقها في تطبيق عملي في مجال التعليم. تتناول هذه الورقة لأول مرة مهمة توليد زوج الإجابة السؤال في بيانات الفحص العالمي الحقيقي، وتقترح إطارا جديدا جديدا في العرق. لالتقاط المعلومات المهمة لمقطع الإدخال، نقوم أولا بإنشاء أجهزة iTPhragrases (بدلا من استخراج)، وبالتالي يتم تقليل هذه المهمة إلى توليد مشترك مسدد السؤال عن السؤال المجاني. تبعا لذلك، نقترح نموذج اتصالات متعددة الوكيل لتوليد واستفسار الأسئلة والمجاسات القصيرة بشكل متكرر، ثم قم بتطبيق السؤال والمجاسيات المتولدة لتوجيه جيل الإجابات. لإنشاء معيار قوي، نبني نموذجنا على نموذج ما قبل التدريب الجيل القوي. تظهر النتائج التجريبية أن نموذجنا يجعل اختراقات كبيرة في مهمة جيل الإجابة عن السؤال. علاوة على ذلك، فإننا نصنع تحليلا شاملا على طرازنا، مما يشير إلى اتجاهات جديدة لهذه المهمة الصعبة.
في التعليم، أصبحت أسئلة الاختبار أداة مهمة لتقييم معرفة الطلاب.ومع ذلك، فإن إعداد هذه الأسئلة يدويا هو مهمة مملة، وبالتالي تم اقتراح توليد السؤال التلقائي كديل ممكن.حتى الآن، ركزت الغالبية العظمى من الأبحاث على توليد نص الأسئلة، والاعتماد على سؤال حو ل مجموعات البيانات مع الإجابات التي اختارها بسهولة، ومشكلة كيفية التوصل إلى إجابة المرشحين في المقام الأول تم تجاهلها إلى حد كبير.هنا، نحن نهدف إلى سد هذه الفجوة.على وجه الخصوص، نقترح نموذجا يمكن أن ينشئ عددا محددا من المرشحين للإجابة لمرق معين من النص، والذي يمكن بعد ذلك استخدامه من قبل المدربين لكتابة الأسئلة يدويا أو يمكن تمريرهم كمدخل لمولدات السؤال التلقائي للإجابة.تشير تجاربنا إلى أن نموذج جيل الرد الخاص بنا اقترح ينفأ على العديد من خطوط الأساس.
يتطلب الإجابة السؤال المنطوقة (SQA) فهما غريبا من الوثائق والأسئلة المنطوقة للتنبؤ بالأجواب المثلى. في هذه الورقة، نقترح خطط تدريبية جديدة للسؤال المستحضر الرد على مرحلة تدريب ذاتية الإشراف ومرحلة تعليم التمثيل المتعاقبة. في المرحلة الإشراف ذاتيا، نق ترح ثلاث مهام إضافية للإشراف على الذات، بما في ذلك استعادة الكلام وإدراج الكلام، والتمييز على السؤال، وتدريب النموذج المشترك على التقاط الاتساق والتماسك بين وثائق الكلام دون أي بيانات أو شروح إضافية. بعد ذلك اقترحنا تعلم تمثيلات الكلام الثغري في الضوضاء في هدف مرتعيض من خلال اعتماد استراتيجيات تكبير متعددة، بما في ذلك حذف الأمان والإحلال. علاوة على ذلك، نقوم بتصميم اهتمام مؤقت للمحاذاة بمحاذاة أدلة نص الكلام في المساحة المشتركة المستفادة ويفيد مهام SQA. بهذه الطريقة، يمكن أن توجه مخططات التدريب بشكل أكثر فعالية نموذج الجيل للتنبؤ بأجوبة أكثر سليمة. تظهر النتائج التجريبية أن نموذجنا يحصل على نتائج أحدث النتائج على ثلاثة معايير SQA. سيتم توفير الكود الخاص بنا علنا ​​بعد النشر.
نقدم مجموعة بيانات جديدة لإعادة كتابة الأسئلة في سياق المحادثة (QRECC)، والتي تحتوي على محادثات 14 ألف مع أزواج من الإجابات السؤال 80k.تتمثل المهمة في QRECC في العثور على إجابات على أسئلة المحادثة داخل مجموعة من صفحات الويب 10 أمتار (تقسيم إلى 54 متر ا مربعا).قد يتم توزيع إجابات على الأسئلة الموجودة في نفس المحادثة عبر العديد من صفحات الويب.توفر QRECC التعليقات التوضيحية التي تسمح لنا بتدريب وتقييم المهارات الفرعية الفردية من إعادة كتابة السؤال، واسترجاع المرور وفهم القراءة المطلوبة لمهمة الإجابة على مسألة المحادثة نهاية إلى نهاية.نبلغ عن فعالية نهج خط الأساس القوي الذي يجمع بين النموذج الحديثة لإعادة كتابة الأسئلة والنماذج التنافسية لقضاء ضمان الجودة المفتوحة.حددت نتائجنا أول خط أساسي ل DataSet QRECC مع F1 من 19.10، مقارنة بمضابط العلوي البشري 75.45، مما يدل على صعوبة الإعداد وغرفة كبيرة للتحسين.
على الرغم من الأداء الممتاز في مهام مثل الإجابة على الأسئلة، تظل الهيغات القائمة على المحولات حساسة للمغوصات النحوية والسياقية. توفر إعادة صياغة الأسئلة (QP) حلا واعدا كوسيلة لزيادة مجموعات البيانات الحالية. تتضمن التحديات الرئيسية لنماذج QP الحالية عدم وجود بيانات تدريبية وصعوبة في توليد أسئلة متنوعة وطبيعية. في هذه الورقة، نقدم الفتح، إطارا لتوليد مجموعات البيانات الاصطناعية للحصول على إعادة صياغة الأسئلة السياقية. تحقيقا لهذه الغاية، توظف الفتح أولا نموذج جيل سؤال للإجابة (QG) لإنشاء مجموعة بيانات سؤال-زوج ثم يستخدم هذه البيانات لتدريب نموذج إعادة صياغة الأسئلة السياقية. نقوم بتقييم الفتح على نطاق واسع وإظهار قدرتها على إنتاج أزواج أسئلة متنوعة وطلاقة أكثر من الأساليب الحالية. ينشئ نموذج إعادة الصياغة السياقية لدينا أيضا خط أساس قوي للحصول على إعادة صياغة سياقية نهاية إلى نهاية. علاوة على ذلك، نجد أن السياق يمكن أن يحسن النتيجة BLEU-1 على الضغط السياقي والتوسع بنسبة 4.3 و 11.2 على التوالي، مقارنة بنموذج غير سياقي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا