ترغب بنشر مسار تعليمي؟ اضغط هنا

الإجابة على الأسئلة المفتوحة على خطوات التفكير المختلفة من النص

Answering Open-Domain Questions of Varying Reasoning Steps from Text

342   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقوم بتطوير نظام موحد للإجابة مباشرة من أسئلة النص المفتوح النص قد تتطلب عددا مختلفا من خطوات الاسترجاع. نحن نوظف نموذجا واحدا للمحولات متعددة المهام لأداء جميع الملاحات الفرعية اللازمة - - استرجاع الحقائق الداعمة، وإعادة تشغيلها، والتنبؤ بإجابة جميع المستندات المستردة --- بطريقة تكرارية. نتجنب الافتراضات الحاسمة للعمل السابق لا ينقل جيدا إلى إعدادات العالم الحقيقي، بما في ذلك استغلال المعرفة بالعدد الثابت من خطوات الاسترجاع المطلوبة للإجابة على كل سؤال أو استخدام البيانات الوصفية الهيكلية مثل قواعد المعرفة أو روابط الويب التي لها توافر محدود. بدلا من ذلك، نقوم بتصميم نظام يمكنه الرد على أسئلة مفتوحة على أي مجموعة نصية دون معرفة مسبقة بتعقيد المعنى. لمحاكاة هذا الإعداد، نبني معيارا جديدا، يسمى BEERSQA، من خلال الجمع بين مجموعات البيانات الموجودة ذات الخطوة الحالية مع مجموعة جديدة من 530 سؤالا تتطلب ثلاث صفحات ويكيبيديا للرد عليها، توحيد إصدارات ويكيبيديا كوربور في العملية. نظهر أن نموذجنا يوضح أداء تنافسي على كل من المعايير الحالية وهذا المعيار الجديد. نجعل المعيار الجديد متاحا في https://beerqa.github.io/.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

إن التنبؤ بإجابة سؤال متعلقة بالمنتج هو مجال ناشئ من البحوث وجذب مؤخرا الكثير من الاهتمام. الإجابة على الأسئلة الذاتية والقائمة على الرأي هي الأكثر تحديا بسبب الاعتماد على المحتوى الذي تم إنشاؤه العملاء. يعمل السابق في الغالب على التنبؤ بالإجابة على مراجعة الاستعراض؛ ومع ذلك، فإن هذه الأساليب تفشل في منتجات جديدة أو غير شعبية، بعد مراجعات (أو قليلة فقط) في متناول اليد. في هذا العمل، نقترح نهج رواية ومكملة للتنبؤ بإجابة هذه الأسئلة، بناء على إجابات أسئلة مماثلة تم طرحها على منتجات مماثلة. نقيس التشابه السياقي بين المنتجات بناء على الإجابات التي توفرها لنفس السؤال. يستخدم إطار خبير في الخبراء للتنبؤ بالإجابة عن طريق تجميع الإجابات من المنتجات المماثلة للسياق. توضح النتائج التجريبية أن نموذجنا يتفوق على خطوط أساسية قوية في بعض شرائح الأسئلة، أي تلك التي لها ما يقرب من عشرة أسئلة واحدة أو أكثر مماثلة في الجور. بالإضافة إلى ذلك نشر مجموعات بيانات واسعة النطاق المستخدمة في هذا العمل، أحد أزواج أسئلة مماثلة، والثاني هو أزواج الإجابة على الأسئلة.
في حين أن مجموعات بيانات الإجابة على الأسئلة المتنوعة (QA) اقترحت وساهمت بشكل كبير في تطوير نماذج التعلم العميق لمهام ضمان الجودة، فإن البيانات الحالية تقصر في جوانبين. أولا، نفتقر إلى مجموعات بيانات ضمان الجودة التي تغطي الأسئلة المعقدة التي تنطوي ع لى إجابات بالإضافة إلى عمليات التفكير للحصول عليها. نتيجة لذلك، لا تزال أبحاث ضمنيا في ضمان الجودة العددية تركز على حسابات بسيطة ولا توفر التعبيرات الرياضية أو الأدلة التي تبرر الإجابات. ثانيا، ساهم مجتمع ضمان الجودة في الكثير من الجهد لتحسين إمكانية تفسير نماذج QA. ومع ذلك، فإنهم يفشلون في إظهار عملية التفكير صراحة، مثل أمر الأدلة من أجل التفكير والتفاعلات بين الأدلة المختلفة. لمعالجة العيب المذكور أعلاه، نقدم Noahqa ومجموعة بيانات QA محادثة وثنائية اللغة مع أسئلة تتطلب التفكير العددي مع التعبيرات الرياضية المركبة. مع Noahqa، نقوم بتطوير رسم بياني لتفكير قابل للتفسير بالإضافة إلى متري التقييم المناسب لقياس جودة الإجابة. نقوم بتقييم حديثة نماذج ضمان الجودة المدربة باستخدام مجموعات بيانات QA الحالية على Noahqa وإظهار أن الأفضل من بينها يمكن فقط تحقيق 55.5 عشر درجات مطابقة محددة، في حين أن الأداء البشري هو 89.7. نقدم أيضا نموذجا جديدا في ضمان الجودة لتوليد رسم بياني للمنطق حيث لا يزال متري الرسم البياني للمنطق فجوة كبيرة مقارنة بمركبات البشر، على سبيل المثال، 28 درجات.
مهارات التفكير العددي ضرورية للإجابة على الأسئلة المعقدة (CQA) على النص.يتطلب opertaions بما في ذلك العد والمقارنة والإضافة والطرح.يتبع نهج ناجح في CQA على النص، وشبكات الوحدات النمطية العصبية (NMNS)، تتبع نموذج المبرمج ومترجم البرامج النمطية النمطية المتخصصة لأداء التفكير التركيبي.ومع ذلك، فإن إطار NMNS لا ينظر في العلاقة بين الأرقام والكيانات في كل من الأسئلة والفقرات.نقترح تقنيات فعالة لتحسين قدرات التفكير العددي NMNS من خلال إدراك السؤال المترجم والتقاط العلاقة بين الكيانات والأرقام.على نفس المجموعة الفرعية من DataSet Drop for CQA على النص، تظهر النتائج التجريبية أن إضافاتنا تتفوق على NMNS الأصلي بنسبة 3.0 نقاط للحصول على درجة F1 الإجمالية.
حققت استرجاع النص العصبي الكثيف نتائج واعدة حول السؤال المفتوح للنطاق الرد (QA)، حيث يتم استغلال تمثيلات كامنة للأسئلة والمراجيات للحصول على أقصى قدر من البحث الداخلي في عملية الاسترجاع. ومع ذلك، فإن المستردات الكثيفة الحالية تتطلب تقسيم المستندات إل ى مقاطع قصيرة تحتوي عادة على سياق محلي جزئي ومحازي في بعض الأحيان، وتعتمد بشدة على عملية تقسيم. ونتيجة لذلك، قد تسفر عن تعويضات مخفية غير دقيقة ومضللة، مما تدهور نتيجة الاسترجاع النهائي. في هذا العمل، نقترح استرجاع هرمي هرمي كثيف (DHR)، وهو إطار هرمي يمكنه إنشاء تمثيلات كثيفة دقيقة من الممرات من خلال الاستفادة من كل من الدلالات الكبيرة في الوثيقة والدليل المجهري المحدد لكل مقطع. على وجه التحديد، يحدد المسترد على مستوى المستند أولا المستندات ذات الصلة، من بينها يتم استرداد المقاطع ذات الصلة من خلال المسترد لمستوى المقاطع. سيتم معايرة ترتيب الممرات المستردة من خلال دراسة أهمية مستوى الوثيقة. بالإضافة إلى ذلك، يتم التحقيق في هيكل العنوان الهرمي واستراتيجيات أخذ العينات السلبية (I.E.، في السلبيات في السلبيات) في السلبيات). نطبق DHR إلى مجموعات بيانات QA مفتوحة على نطاق واسع. تتفوق DHR بشكل كبير على استرداد المقطع الكثيف الأصلي، ويساعد نظام ضمان الجودة في نهاية إلى نهاية يتفوق على الأساس القوي على معايير QA متعددة النطاق.
تمكين أنظمة حوار المجال المفتوح لطرح أسئلة توضيحية عند الاقتضاء هو اتجاه مهم لتحسين جودة استجابة النظام.وهي، بالنسبة للحالات عندما يكون طلب المستخدم غير محددا لنظام محادثة لتوفير إجابة على الفور، فمن المستحسن طرح سؤال توضيحي لزيادة فرص استرداد إجابة مرضية.لمعالجة مشكلة توضيح الأسئلة في الحوارات المفتوحة في الحوارات ": (1) نجمع وتحرير مجموعة بيانات جديدة تركز على المحادثات المفتوحة ومتعددة الدورات، (2) نحن معيارا عدة حالاتخطوط الأساس العصبية الفن، و (3) نقترح خط أنابيب يتكون من خطوات غير متصلة بالإنترنت وعلى الإنترنت لتقييم جودة توضيح الأسئلة في حوارات مختلفة.هذه المساهمات مناسبة كمؤسسة لمزيد من البحث.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا