تهدف محاذاة الكيان (EA) إلى مطابقة الكيانات المكافئة عبر الرسوم البيانية المعرفة المختلفة (KGS) وهي خطوة أساسية من KG Fusion. الأساليب الرئيسية الحالية - نماذج عصام العصبية - تعتمد على التدريب مع محاذاة البذور، أي مجموعة من أزواج كيان ما قبل الانحياز والتي تعد مكلفة للغاية للتعليق. في هذه الورقة، نركض إطارا للتعليم النشط الجديد (AL) من أجل EA العصبي، تهدف إلى إنشاء محاذاة بذرة مفيدة للغاية للحصول على نماذج EA أكثر فعالية مع تكلفة أقل تعلقا. يعالج إطارنا تحديين رئيسيتين واجههما عند تطبيق Alo EA: (1) كيفية استغلال التبعيات بين الكيانات داخل الإستراتيجية. تفترض معظم الاستراتيجيات أن مثيلات البيانات للعينة مستقلة وتوزيعها بشكل متطابقة. ومع ذلك، ترتبط الكيانات في كجم. لمعالجة هذا التحدي، نقترح استراتيجية أخذ العينات غير اليقين في الهيكل التي يمكن أن تقيس حالة عدم اليقين في كل كيان وتأثيرها على كياناته الجار في كجم. (2) كيفية التعرف على الكيانات التي تظهر في كجم واحد ولكن ليس في كجم آخر (I.E.، البكالوريوس). تحديد البكالوريوس من المرجح أن ينقذ ميزانية التعليق التوضيحي. لمعالجة هذا التحدي، نحن نضع المعرفة البكالوريوس يدفع الانتباه إلى تخفيف تأثير تحيز أخذ العينات. تظهر النتائج التجريبية أن استراتيجيتنا المقترحة يمكن أن تحسن بشكل كبير جودة أخذ العينات بعنادة جيدة عبر مجموعات البيانات المختلفة ونماذج EA ومبلغ البكالوريوس.
Entity Alignment (EA) aims to match equivalent entities across different Knowledge Graphs (KGs) and is an essential step of KG fusion. Current mainstream methods -- neural EA models -- rely on training with seed alignment, i.e., a set of pre-aligned entity pairs which are very costly to annotate. In this paper, we devise a novel Active Learning (AL) framework for neural EA, aiming to create highly informative seed alignment to obtain more effective EA models with less annotation cost. Our framework tackles two main challenges encountered when applying AL to EA: (1) How to exploit dependencies between entities within the AL strategy. Most AL strategies assume that the data instances to sample are independent and identically distributed. However, entities in KGs are related. To address this challenge, we propose a structure-aware uncertainty sampling strategy that can measure the uncertainty of each entity as well as its impact on its neighbour entities in the KG. (2) How to recognise entities that appear in one KG but not in the other KG (i.e., bachelors). Identifying bachelors would likely save annotation budget. To address this challenge, we devise a bachelor recognizer paying attention to alleviate the effect of sampling bias. Empirical results show that our proposed AL strategy can significantly improve sampling quality with good generality across different datasets, EA models and amount of bachelors.
المراجع المستخدمة
https://aclanthology.org/
الترجمة الآلية العصبية (NMT) حساسة لتحويل المجال. في هذه الورقة، نتعامل مع هذه المشكلة في إعداد تعليمي نشط حيث يمكننا أن نقضي ميزانية معينة في ترجمة البيانات داخل المجال، وتصفح تدريجيا نموذج NMT خارج المجال المدرب مسبقا على البيانات المترجمة حديثا. ع
الحجج عالية الجودة هي جزء أساسي من صنع القرار.توقع جودة الوسيطة تلقائيا هي مهمة معقدة حصلت مؤخرا على الكثير من الاهتمام في تعدين الحجة.ومع ذلك، فإن جهود التوضيحية لهذه المهمة مرتفعة بشكل استثنائي.لذلك، نختبر أساليب التعلم النشطة القائمة على عدم اليقي
الترجمة التنبؤية التفاعلية هي عملية تكرارية تعاونية وحيث تنتج مترجمات البشر الترجمات بمساعدة أنظمة الترجمة الآلية (MT) بشكل تفاعلي. توجد تقنيات أخذ العينات المختلفة في التعلم النشط (AL) لتحديث نموذج MT (NMT) العصبي في السيناريو التفاعلي التنبؤ بالتنب
أظهرت مؤخرا تقنيات محاذاة المستندات بناء على تمثيلات جملة متعددة اللغات في مؤخرا حالة النتائج الفنية.ومع ذلك، تعتمد هذه التقنيات على تقنيات قياس المسافة غير المزعجة، والتي لا يمكن تغريمها بالمهمة في متناول اليد.في هذه الورقة، بدلا من تقنيات قياس المس
في حين أن الأداء التنبئي لمحطات التبعية الإحصائية الحديثة يعتمد بشدة على توافر بيانات Treebank المشروح باهظة الثمن، إلا أن جميع التعليقات التعليقات التوضيحية تسهم على قدم المساواة في تدريب المحللين.في هذه الورقة، نحاول تقليل عدد الأمثلة المسماة اللاز