تهدف محاذاة الكيان المتبادل (EA) إلى إيجاد الكيانات المكافئة بين Crosslingual KGS (الرسوم البيانية المعرفة)، وهي خطوة حاسمة لإدماج KGS.في الآونة الأخيرة، يتم اقتراح العديد من طرق EA القائمة على GNN وإظهار تحسينات الأداء اللائق على العديد من مجموعات البيانات العامة.ومع ذلك، فإن طرق EA القائمة القائمة على GNN ترثت حتما بشكل حتمة الترجمة الشفوية والكفاءة المنخفضة من الشبكات العصبية.تحفزه افتراض ISOMORPHIC من الأساليب القائمة على GNN، ونحن نجح في تحويل مشكلة EA عبر اللغات في مشكلة مهمة.بناء على هذا التعريف، نقترح طريقة محاذاة كيان بسيطة ولكنها فعالة بشكل محبط (SEU) دون شبكات عصبية.أجريت تجارب واسعة لإظهار أن نهجنا المقترح غير المقترح حتى يدق طرق متقدمة تحت إشراف على جميع مجموعات البيانات العامة مع ارتفاع الكفاءة والتفسيرية والاستقرار.
Cross-lingual entity alignment (EA) aims to find the equivalent entities between crosslingual KGs (Knowledge Graphs), which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvements on several public datasets. However, existing GNN-based EA methods inevitably inherit poor interpretability and low efficiency from neural networks. Motivated by the isomorphic assumption of GNN-based methods, we successfully transform the cross-lingual EA problem into an assignment problem. Based on this re-definition, we propose a frustratingly Simple but Effective Unsupervised entity alignment method (SEU) without neural networks. Extensive experiments have been conducted to show that our proposed unsupervised approach even beats advanced supervised methods across all public datasets while having high efficiency, interpretability, and stability.
المراجع المستخدمة
https://aclanthology.org/
انفجرت الإجابة على الأسئلة المفتوحة في مجال الشعبية مؤخرا بسبب نجاح نماذج استرجاع كثيفة، والتي تجاوزت النماذج المتناقضة باستخدام بعض الأمثلة التدريبية الإشراف فقط. ومع ذلك، في هذه الورقة، نوضح النماذج الكثيفة الحالية ليست بعد الجراد المقدس من استرجاع
على الرغم من النجاح الواسع النطاق للتعلم الإشراف على الذات من خلال نماذج لغة ملثم (MLM)، فإن التقاط علاقات الدلالية الدقيقة الدقيقة في المجال الطبي الحيوي يظل تحديا. هذا أمر بالغ الأهمية لمهام مستوى الكيان مثل الكيان الذي يربط حيث القدرة على نموذج ال
تحليل التبعية عبر المجال غير الخاضع للإكمال هو إنجاز تكيف مجال تحليل التبعية دون استخدام البيانات المسمى في المجال المستهدف. غالبا ما تكون الأساليب الحالية من نوع التوضيح الزائفة، والتي تنشئ البيانات من خلال التوضيح الذاتي للنموذج الأساسي وأداء التدر
أدى توفر Corpora إلى تقدم كبير في تدريب المحللين الدلاليين باللغة الإنجليزية.لسوء الحظ، لغات أخرى غير اللغة الإنجليزية، البيانات المشروحة محدودة وكذلك أداء المحللين المتقدمة.لقد أثبتت نماذج متعددة اللغات مؤخرا مفيدة للتحويل الصفر اللغوي في العديد من
تعاني نماذج الترجمة الآلية العصبية غير التلقائية (NART) من مشكلة الوسائط المتعددة والتي تسبب عدم تناسق الترجمة مثل تكرار الرمز المميز. حاولت معظم الأساليب الأخيرة حل هذه المشكلة من خلال النمذجة الضمنية التبعيات بين المخرجات. في هذه الورقة، نقدم Align