ترغب بنشر مسار تعليمي؟ اضغط هنا

آنية قراءة الفهم مع زيادة البيانات: دراسة حالة حول استخراج وسيطة الحدث الضمني

Machine Reading Comprehension as Data Augmentation: A Case Study on Implicit Event Argument Extraction

492   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

إن استخراج وسيطة الحدث الضمني (EAE) هي مهمة حاسمة لاستخراج المعلومات على مستوى المستندات تهدف إلى تحديد حجج الحدث بما يتجاوز مستوى الجملة.على الرغم من الجهود العديدة لهذه المهمة، فإن عدم وجود بيانات تدريبية كافية قد أعاقت الدراسة.في هذه الورقة، نأخذ منظورا جديدا لمعالجة قضية Sparsity الخاصة بالبيانات التي تواجهها EAE الضمنية، من خلال سد المهمة مع فهم القراءة بالآلة (MRC).على وجه الخصوص، نحن ابتكرت نظاميين تكبير البيانات عبر MRC، بما في ذلك: 1) يتيح نقل المعرفة الضمني، مما يتيح نقل المعرفة من المهام الأخرى، من خلال بناء إطار تدريب موحد في صياغة MRC، و 2) تكبير بيانات صريح، والتي يمكن أن تولد جديدا جديداأمثلة تدريبية، عن طريق علاج نماذج MRC كهندان.لقد بررت التجارب الواسعة فعالية نهجنا - - لا يحصل فقط على أداء حديثة على معيارين، ولكن أيضا يوضح نتائج متفوقة في سيناريو منخفضة البيانات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

لقد أثبتت تدريب الخصم (AT) كطريقة تنظيمي فعاليتها على المهام المختلفة.على الرغم من وجود تطبيقات ناجحة في بعض مهام NLP، إلا أن الخصائص المميزة لمهام NLP لم يتم استغلالها.في هذه الورقة، نهدف إلى تطبيق مهام فهم القراءة (MRC).علاوة على ذلك، فإننا نتكيف م ع مهام MRC من خلال اقتراح طريقة تدريبية عديدة جديدة تسمى PQAT التي تتعلق بمصفوفة التضمين بدلا من ناقلات Word.للتمييز بين أدوار الممرات والأسئلة، يستخدم PQAT مصفوفات إضافية P / Q Directding إضافية لجمع الاضطرابات العالمية للكلمات من الممرات والأسئلة بشكل منفصل.نحن نختبر الطريقة على مجموعة واسعة من مهام MRC، بما في ذلك RC الاستخراجية المستندة إلى RC واستخراج RC متعددة الخيارات.تظهر النتائج أن التدريب الخصم فعال عالميا، ويحسن PQAT الأداء.
نحن ندرس مشكلة استخراج وسيطة الأحداث عبر اللغات (CEAE). تهدف المهمة إلى التنبؤ بأدوار حجة من يذكر الأحداث في النص، والتي تختلف لغتها عن اللغة التي تم تدريبها على نموذج تنبؤي. أظهر العمل السابق على CEAE الفوائد المتبادلة لأشجار الاعتماد الشامل في التق اط الهياكل النحوية المشتركة للجمل عبر اللغات. على وجه الخصوص، يستغل هذا العمل وجود الاتصالات النحوية بين الكلمات في أشجار التبعية كمعرفة مرساة لنقل التمثيل تعلم عبر اللغات لنماذج CEAE (I.E.، عبر الرسوم البيانية الشبكات العصبية العلاجية - GCNS). في هذه الورقة، نقدم مصادر رواية معلومات مستقلة من اللغة للحصول على نماذج CEAE بناء على التشابه الدلالي وعلاقات التبعية الشاملة في Word Pairs بلغات مختلفة. نقترح استخدام مصادر المعلومات لإنتاج هياكل جملة مشتركة لسد الفجوة بين اللغات وتحسين الأداء المتبادل لنماذج CEAE. يتم إجراء تجارب واسعة مع اللغة العربية والصينية والإنجليزية لإظهار فعالية الطريقة المقترحة للحصول على CEAE.
تعظيم البيانات غير المزعجة (UDA) هي تقنية شبه بيئية تنطبق على فقدان الاتساق لمعاقبة الاختلافات بين تنبؤات النماذج على (أ) أمثلة ملحوظة (غير مسفحة)؛ و (ب) الأمثلة الواضحة المقابلة التي تم إنتاجها عبر تكبير البيانات. في حين أن UDA اكتسبت شعبية لتصنيف ا لنصوص، فإن الأسئلة المفتوحة باقية من قرارات التصميم ضرورية وكيفية تمديد الطريقة لتسلسل مهام وضع العلامات. في هذه الورقة، نعيد فحص UDA وإظهار فعاليتها في العديد من المهام المتسلسلة. مساهمتنا الرئيسية هي دراسة تجريبية ل UDA لتأسيس مكونات الخوارزمية التي تمنح استحقاقات NLP. وخاصة، على الرغم من أن العمل السابق قد أكد على استخدام تقنيات تكبير ذكية بما في ذلك الترجمة ذات الترجمة المرجانية، نجد أن التناسق بين التنبؤات المخصصة للكلمات الملحوظة والمستبدلة غالبا ما تسفر عن فوائد قابلة للمقارنة (أو أكبر) مقارنة بنماذج الاضطرابات الأكثر تعقيدا. علاوة على ذلك، نجد أن تطبيق فقدان اتساق UDA يوفر مكاسب ذات مغزى دون أي بيانات غير قابلة للتحقيق على الإطلاق، أي في إعداد قياسي إشرافي. باختصار، لا تحتاج UDA إلى عدم إدراكها لتحقيق الكثير من فوائدها المذكورة، ولا تتطلب تكبير بيانات معقدة لتكون فعالة.
تقدم هذه الورقة المهمة المشتركة Semeval-2021 4: قراءة الفهم من معنى مجردة (Recam). تم تصميم هذه المهمة المشتركة للمساعدة في تقييم قدرة الآلات في تمثيل وفهم مفهوم مجردة. يتعين على النظام المقابل، من المتوقع أن يختار نظام المشاركة، الإجابة الصحيحة من خ مسة مرشحين من المفاهيم المجردة في الفهم مهام. بناء على اثنين من التعريفات النموذجية للمخراج، أي غير محسنة وغير محددة، توفر مهمتنا ثلاثة مجموعات فرعية لتقييم قدرة النماذج في فهم النوعين من المعنى التجريدي وتعميم النماذج. على وجه التحديد، يهدف فرقة فرعية 1 إلى تقييم مفاهيم نماذج النظام المشاركة التي لا يمكن أن ينظر إليها مباشرة في العالم المادي. يركز SubTask 2 على قدرة النماذج في فهم مفاهيم غير محددة تقع عالية في التسلسل الهرمي Hypernym نظرا لسياق مرور. يهدف SubTask 3 إلى توفير بعض الأفكار حول تعميم النماذج على النوعين من الممرضين. خلال فترة التقييم الرسمية SEMEVAL-2021، تلقينا 23 تقريرا إلى الفرعية 1 و 28 إلى الفريق الفرعي 2. قدمت الفرق المشاركة بالإضافة إلى ذلك 29 تقريرا إلى الفرع الفرعي 3. يمكن العثور على موقع المتصدرين ومواقع المنافسة في HTTPS: //competitions.codalab. ORG / المسابقات / 26153. تتوفر بيانات البيانات وخطوط الأساس في https://github.com/boyuanzheng010/semeval2021-Reading-comprehension-of-Abstract-meaning.
في هذه الورقة، نقدم مجموعة بيانات مفهوم التحقق من قراءة جديدة تسمى vgaokao من اختبارات اللغة الصينية في Gaokao.تختلف عن الجهود الحالية، تم تصميم مجموعة البيانات الجديدة في الأصل لتقييم المتحدثين الأصليين، وبالتالي تتطلب مهارات تفاهم لغة أكثر تقدما.لم عالجة التحديات في Vgaokao، نقترح نهجا جديدا متناكج للمتخصص، الذي يختار تكرارا دليلا تكميليا مع وجود آلية تحديث استعلام رواية وأدلة تدعم تكاليف، تليها مسابقة زوجية لدفع النماذج لتعلم الفرق الدقيق بين ما شابه ذلكقطع النص.تبين التجارب أن أساليبنا تتفوق على مختلف خطوط الأساس على Vgaokao مع أدلة تكميلية مستردة، مع وجود مزايا الكفاءة والشرطية.يتم إصدار DataSet و Code لدينا لمزيد من البحث.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا