يعد استرجاع الكيانات، الذي يهدف إلى إشراف الإزهام إلى الكيانات الكنسية من KBS ضخمة، ضروريا للعديد من المهام في معالجة اللغة الطبيعية.يوضح التقدم المحرز الأخير في استرجاع الكيانات أن هيكل التشفير المزدوج هو إطار قوي وفعال لترشيح المرشحين إذا تم تحديد الكيانات إلا بواسطة الأوصاف.ومع ذلك، فإنهم يتجاهلون العقار الذي يذكرنى أن معاني الكيان تذكر في سياقات مختلفة وترتبط بأجزاء مختلفة من الأوصاف، والتي تعامل على قدم المساواة في الأعمال السابقة.في هذا العمل، نقترح تمثيل كيان متعدد النقود (MURES)، وهو نهج رواية لاسترجاع الكيان الذي يبني تمثيلات متعددة المشاهدات لأوصاف الكيان وتقريب الرأي الأمثل للإشراف عبر طريقة البحث المثيرة.تحقق طريقةنا الأداء الحديثة على Zeshel ويحسن جودة المرشحين في مجموعات بيانات ربط كيان قياسية.
Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and efficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.
المراجع المستخدمة
https://aclanthology.org/
تستخدم الرسوم البيانية المعرفة (KGS) على نطاق واسع لتخزين المعلومات والوصول إليها حول الكيانات وعلاقاتها.بالنظر إلى استفسار، تهدف مهمة استرجاع الكيانات من KG إلى تقديم قائمة في المرتبة ذات الصلة بالاستعلام.في الآونة الأخيرة، أظهر عدد متزايد من النماذ
على الرغم من النجاح الواسع النطاق للتعلم الإشراف على الذات من خلال نماذج لغة ملثم (MLM)، فإن التقاط علاقات الدلالية الدقيقة الدقيقة في المجال الطبي الحيوي يظل تحديا. هذا أمر بالغ الأهمية لمهام مستوى الكيان مثل الكيان الذي يربط حيث القدرة على نموذج ال
عملية التحقق من المطالبة تحديا لأنها تتطلب أولا العثور على أدلة نصية ثم قم بتطبيق تستيط أدلة المطالبة للتحقق من مطالبة.تقوم Works السابقة بتقييم خطوة الاستقبال استنادا إلى الأدلة المستردة، في حين أننا نفترض أن التنبؤ الاستيباري يمكن أن يوفر إشارات مف
التحقق من الحقائق الآلية على نطاق واسع هو مهمة صعبة لم تتم دراستها بشكل منهجي حتى وقت قريب.مجموعات وثيقة صاخبة كبيرة مثل الويب أو المقالات الإخبارية تجعل المهمة أكثر صعوبة.نحن تصف نظام فحص الحقائق الآلي من ثلاث مراحل، اسمه Quin +، باستخدام أساليب است
يهدف هذا البحث إلى اقتراح طريقة لتحسين نتائج استرجاع المعلومات العربية دلالياً
و ذلك بتلخيص النصوص تجريدياً (Abstractive Summary) باستخدام خوارزميات
معالجة اللغات الطبيعية (NLP), حل غموض معاني الكلمات (WSD) و قياس التشابهية
الدلالية (Semantic Si