ترغب بنشر مسار تعليمي؟ اضغط هنا

سريع وفعال ومشرف ذاتي: تحويل نماذج لغة ملثمين إلى تشفير المعجمات والعامة العالمية

Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders

566   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أشار العمل السابق إلى أن النماذج اللغوية المحددة مسبقا (MLMS) غير فعالة مثل تشفير المعجمات المعجمية والجملة العالمية خارج الرف، أي دون مزيد من ضبط الدقيقة بشكل جيد على NLI أو تشابه الجملة أو إعادة الصياغة المهام باستخدام بيانات المهام المشروحة وبعد في هذا العمل، نوضح أنه من الممكن تحويل MLMS إلى تشفير معجمية وقضية فعالة حتى دون أي بيانات إضافية، والاعتماد ببساطة على الإشراف الذاتي. نقترح تقنية تعليمية بسيطة للغاية وسريعة وفعالة وفعالة، وتسمى برت مرآة، والتي تحول MLMS (على سبيل المثال، بيرت وروبرتا) إلى مثل هذه اللوائح في 20-30 ثانية مع عدم وجود إمكانية الوصول إلى المعرفة الخارجية الإضافية. تعتمد Mirror-Bert على أزواج سلسلة متطابقة وعزز قليلا كأمثلة إيجابية (I.E.، مرادف)، وتهدف إلى زيادة تشابهها أثناء ضبط الهوية ". نبلغ عن مكاسب ضخمة أكثر من MLMS Off-Relf مع Mirror-Bert كل من المستوى المعجمي والمهام على مستوى الجملة، عبر المجالات المختلفة ولغات مختلفة. وخاصة، في مشابه الجملة (STS) ومهام إستقبال الإجابة عن السؤال (QNLI)، فإن نموذجنا المرآة الإشراف على نفسه يطابق أداء نماذج Bertence-Bert من العمل السابق الذي يعتمد على بيانات المهام المشروح. أخيرا، نقوم بتحويل أعمق في الأعمال الداخلية لل MLMS، واقترح بعض الأدلة على سبب قيام هذا النهج بسيطة بسيطة بالمرآبة الرصيد بإعادة ترميز اللوائح المعجمية والعامة العامة الفعالة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نقدم ثلاثة أنظمة مختلفة للإشراف على تنبؤ التعقيد المعجمي باللغة الإنجليزية للتعبيرات الفردية والمتعددة المهام ل Semeval-2021.الرمز المستهدف في السياق.تجمع أفضل نظامنا بين المعلومات من هذه المصادر الثلاث.تشير النتائج إلى أن المعلومات ال واردة من نماذج اللغة الملثمين ويمكن دمج ترميز مستوى الطابع لتحسين تنبؤ التعقيد المعجمي.
أصبحت نماذج لغة كبيرة من الصعب تدريبا على نحو متزايد بسبب وقت الحسبان المتزايد والتكلفة.في هذا العمل، نقدم SRU ++، وهي عبارة عن بنية عالية الكفاءة تجمع بين تكرار سريع واهتمام لنمذجة التسلسل.SRU ++ يعرض قدرة النمذجة القوية وكفاءة التدريب.فيما يتعلق بم هام نمذجة اللغة القياسية مثل مجموعات بيانات ENWIK8 و Wiki-103 و Mount Word Word، يحصل نموذجنا على أجزاء أفضل لكل حرف وحيرة أثناء استخدام تكلفة التدريب الأقل بنسبة 3x-10x مقارنة بنماذج المحولات ذات الأداء الأعلى.على سبيل المثال، يحقق نموذجنا نتيجة حديثة لمجموعة بيانات Enwik8 باستخدام 1.6 أيام من التدريب على آلة 8 GPU.نوضح كذلك أن SRU ++ يتطلب الحد الأدنى من الاهتمام بالقرب من الأداء القريب من الحديث.تشير نتائجنا إلى الاستفادة بشكل مشترك تكرار سريع مع القليل من الاهتمام باعتباره اتجاها واعدا لتسريع التدريب النموذجي والاستدلال.
النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي وب MLM الرئيسية في هذا الإعداد. أولا، حيث تميل التسميات التوضيحية إلى أن تكون قصيرة، في ثلث الجمل لا يتم أخذ عينات من الجمل. ثانيا، غالبية الرموز الملثمين هي التوقف عن الكلمات وعلامات الترقيم، مما يؤدي إلى نقص في الاستخدام للصورة. إننا نحقق في مجموعة من استراتيجيات التقنيع البديلة المحددة لإعداد العرض المتعلق الذي يتناول هذه أوجه القصور، تهدف إلى توصيف أفضل من النص والصورة في التمثيل المستفاد. عند تدريب ما قبل التدريب على نموذج LXMERT، تتحسن استراتيجياتنا البديلة الخاصة بنا باستمرار عبر استراتيجية التقنيع الأصلية على ثلاثة مهام أسفل المصب، خاصة في إعدادات الموارد المنخفضة. علاوة على ذلك، يتفوق نهجنا قبل التدريب بشكل كبير على نموذج الأساس في مهمة التحقيق الفورية المصممة لاستنباط كائنات الصورة. تشير هذه النتائج وتحليلنا إلى أن طريقتنا تسمح باستفادة أفضل من بيانات التدريب.
بالنسبة لأي موقع على شبكة الإنترنت للتجارة الإلكترونية، فهذا مشكلة غير خيالية تبني الإعلانات الدائمة التي تجذب المتسوقين.من الصعب اجتياز شريط الجودة الإبداعي للموقع، خاصة على نطاق واسع.وبالتالي نقترح حل برنامجي لتوليد عناوين إعلانات المنتج باستخدام م حتوى البيع بالتجزئة.نقترح حالة من التطبيقات الفنية لطرق التدرج في سياسة التعلم (RL) على المحولات (Vaswani et al.، 2017) نماذج لغة ملثم مقرها (ديفلين وآخرون، 2019).تقوم طريقةنا بإنشاء العنوان الإعلاني من خلال تكييف مشترك على منتجات متعددة يرغب البائع في الإعلان.نوضح أن أسلوبنا تتفوق على أساليب المحولات الحالية و LSTM + RL في مقاييس تداخل وتدقيق الجودة.نظهر أيضا أن عناويننا النموذجية التي تم إنشاؤها تفوقت عناوين حقوق الإنسان المقدمة من حيث القواعد الناقدية والجودة الإبداعية على النحو المحدد بالتدقيق.
أصبحت بنية المحولات في كل مكان في مجال معالجة اللغات الطبيعية.لتفسير النماذج القائمة على المحولات، تم تحليل أنماط اهتمامها على نطاق واسع.ومع ذلك، فإن بنية المحولات لا تتكون فقط من الاهتمام متعدد الأطراف؛يمكن أن تسهم مكونات أخرى أيضا في الأداء التدريج ي المحولات.في هذه الدراسة، مددنا نطاق تحليل المحولات من أنماط الانتباه فقط إلى كتلة الاهتمام بأكمله، أي اهتمام متعدد الأطراف، والاتصال المتبقي، وتطبيع الطبقة.يوضح تحليل النماذج اللغوية المقصودة للمحولات أن التفاعل الرمزي إلى الرمز المميز الذي يؤديه عن طريق الاهتمام له تأثير أقل على التمثيل الوسيط مما كان مفترض سابقا.توفر هذه النتائج تفسيرات جديدة بديهية للتقارير القائمة؛على سبيل المثال، تم تجاهل أنماط الانتباه المستفادة لا تؤثر سلبا على الأداء.رموز تجاربنا متاحة للجمهور.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا