ترغب بنشر مسار تعليمي؟ اضغط هنا

أشرطة استفسار السياق للبحث المحادثة

Contextualized Query Embeddings for Conversational Search

397   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تصف هذه الورقة نموذجا مدمجا وفعالا لاسترجاع مرور الكمون المنخفض في البحث عن المحادثة بناء على تمثيلات كثيفة علمية. قبل عملنا، يستخدم النهج الواحد من بين الفنون خط أنابيب متعدد المراحل يشتمل على وحدات إعادة صياغة استعلام محادثة واسترجاع المعلومات. على الرغم من فعاليته، غالبا ما يتضمن هذا الخط الأنابيب نماذج عصبية متعددة تتطلب أوقات الاستدلال الطويلة. بالإضافة إلى ذلك، تحسين كل وحدة بشكل مستقل يتجاهل التبعيات بينهم. لمعالجة هذه العيوب، نقترح دمج إعادة صياغة استعلام المحادثة مباشرة في نموذج استرجاع كثيف. للمساعدة في هذا الهدف، نقوم بإنشاء مجموعة بيانات مع ملصقات ذات صلة زائفة للبحث عن المحادثة للتغلب على عدم وجود بيانات تدريب واستكشاف استراتيجيات تدريب مختلفة. نوضح أن نموذجنا يعيد كتابة استعلامات المحادثة بشكل فعال كتمثيلات كثيفة في البحث عن المحادثة والفتح عن نطاق البيانات. أخيرا، بعد مراعاة أن طرازنا يتعلم ضبط نموذج L2 من Arquer Token Ageddings، فإننا نستفيد من هذه الخاصية لاسترجاع الهجين ودعم تحليل الأخطاء.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

Requery Rewrite (QR) هو مكون ناشئ في أنظمة المحادثة AI، مما يقلل من عيب المستخدم.سبب عيب المستخدم لأسباب مختلفة، مثل الأخطاء في نظام الحوار المنطوق أو عروض المستخدمين للسان أو لغتهم المختصرة.ينبع العديد من عيوب المستخدمين من العوامل الشخصية، مثل نمط خطاب المستخدم أو اللهجة أو التفضيلات.في هذا العمل، نقترح إطار عمل QR القائم على البحث شخصي، والذي يركز على التخفيض التلقائي لعيب المستخدم.نقوم ببناء مؤشر شخصي لكل مستخدم، يشمل طبقات تقارب متنوعة لتعكس التفضيلات الشخصية لكل مستخدم في منظمة العفو الدولية المحادثة.يحتوي نظام QR الشخصي الخاص بنا على طبقات استرجاع وترتيب.بدعم من التعلم القائم على ملاحظات المستخدم، تدريب نماذجنا لا يتطلب بيانات مشروح يدوية.أظهرت التجارب على مجموعة الاختبارات الشخصية أن نظام QR الشخصي الخاص بنا قادر على تصحيح أخطاء النظامية والمستخدم باستخدام المدخلات الصوتية والدلية.
نقترح إطارا لنموذج نفي محادثة تشغيلية من خلال تطبيق السياق الدنيوي (المعرفة السابقة) على النفي المنطقي في دلالات التوزيع التركيبية.بالنظر إلى كلمة، يمكن لإطارنا أن يخلق نفيها مما يشبه كيفية إدراك البشر النفي.يقوم الإطار بتصحيح النفي المنطقي معاني الو زن أقرب إلى التسلسل الهرمي الاستيباري أكثر من المعاني إلى حد بعيد.الإطار المقترح مرن لاستيعاب خيارات مختلفة من النفي المنطقي والتركيبات وتوليد السياق الدنيوي.على وجه الخصوص، نقترح ونحفز النفي المنطقي الجديد باستخدام مصفوفة معكوس.نحن نقوم بالتحقق من حساسية إطار نفي المحادثة لدينا عن طريق إجراء تجارب، واستفادة من مصفوف الكثافة لتشفير معلومات التسلل المتدرجة.نستنتج أن مزيج النفي للطرح والمسار في الأساس من الكلمة المنفذة تعطي أعلى ارتباط بيرسون ب 0.635 مع التقييمات البشرية.
تم إلقاء اللوم على الاستقطاب المتزايد لوسائل الإعلام الإخبارية بسبب عدم الخلاف والجدل وحتى العنف. وبالتالي فإن التعرف المبكر للمواضيع المستقطبة هو مسألة عاجلة يمكن أن تساعد في تخفيف الصراع. ومع ذلك، لا يزال القياس الدقيق للاستقطاب الحكيم في الموضوع ت حديا للبحث المفتوح. لمعالجة هذه الفجوة، نقترح Eptisanship-Aware السياقي الموضوع (PACTE)، وهي طريقة للكشف تلقائيا عن الموضوعات المستقطبة من مصادر الأخبار الحزبية. على وجه التحديد، باستخدام نموذج لغة تم تصنيعه حول التعرف على حزب المقالات الإخبارية، نمثل أيديولوجية لجنة أخبار حول موضوع من خلال تضمين موضوع Corpus-contentralized وقياس الاستقطاب باستخدام مسافة جيبوز. نحن نطبق طريقنا إلى مجموعة بيانات من المقالات الإخبارية حول جائحة CovID-19. تظهر تجارب واسعة على مصادر وأخبار مختلفة ومواضيع فعالية طريقتنا لالتقاط الاستقطاب الموضعي، كما هو موضح بفعاليتها لاسترجاع أكثر الموضوعات المستقطبة.
ويعتقد أن وضع العلامات الدلالية الدلالية للمحادثة (CSRL) هي خطوة حاسمة نحو فهم الحوار.ومع ذلك، لا يزال يمثل تحديا كبيرا لمحلل CSRL الحالي للتعامل مع المعلومات الهيكلية للمحادثة.في هذه الورقة، نقدم بنية بسيطة وفعالة ل CSRL التي تهدف إلى معالجة هذه الم شكلة.يعتمد نموذجنا على شبكة الرسم البياني على بنية المحادثة التي تشفصها بشكل صريح لمعلومات مكبر الصوت.نقترح أيضا طريقة تعليمية متعددة المهام لمواصلة تحسين النموذج.تظهر النتائج التجريبية على مجموعات البيانات القياسية أن نموذجنا مع أهداف التدريب المقترحة لدينا تتفوق بشكل كبير على الأساس السابقة.
دفع نجاح ترميزات ثنائية الاتجاه باستخدام نماذج لغة ملثم، مثل بيرت، في العديد من مهام معالجة اللغة الطبيعية، بباحثي المحاولة لإدماج هذه النماذج المدربة مسبقا في أنظمة الترجمة الآلية العصبية (NMT). ومع ذلك، فإن الأساليب المقترحة لإدماج النماذج المدربة مسبقا هي غير تافهة وتركز بشكل أساسي على بيرتف، والتي تفتقر إلى مقارنة التأثير الذي قد يكون له النماذج الأخرى المدربة مسبقا على أداء الترجمة. في هذه الورقة، نوضح ببساطة باستخدام الناتج (Attentralized Advedings) من طراز لغة تدرب مسبقا مخصص ومناسب (Bibert) مناسبة (Bibert) حيث أن إدخال ترميز NMT يحقق أداء ترجمة حديثة من بين الفن. علاوة على ذلك، نقترح أيضا نهج اختيار طبقة مؤشر استوكاستك ومفهوم نموذج الترجمة المزدوج الاتجاه لضمان الاستخدام الكافي للمشروعات السياقية. في حالة عدم استخدام الترجمة الخلفية، تحقق أفضل النماذج لدينا درجات بلو من 30.45 ل ill → DE و 38.61 ل De → EN على DataSet IWSLT'14، و 31.26 ل EN → DE و 34.94 ل De → EN على WMT 14 DataSet، مما يتجاوز جميع الأرقام المنشورة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا