ترغب بنشر مسار تعليمي؟ اضغط هنا

رصد الخصائص الهندسية ل Adgeddings Word للكشف عن ظهور مواضيع جديدة.

Monitoring geometrical properties of word embeddings for detecting the emergence of new topics.

342   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

إن اكتشاف موضوع الناشئ البطيء هو مهمة بين اكتشاف الحدث، حيث نكمل السلوكيات من الكلمات المختلفة في فترة قصيرة من الزمن، وتطور اللغة، حيث نراقب تطورها الطويل الأجل.في هذا العمل، نتعامل مع مشكلة الكشف المبكر عن المواضيع الجديدة المبكرة.تحقيقا لهذه الغاية، نجمع أدلة على إشارات ضعيفة على مستوى الكلمة.نقترح مراقبة سلوك تمثيل الكلمات في مساحة تضمين واستخدام إحدى خصائصها الهندسية لتوصيف ظهور المواضيع.نظرا لأن التقييم يصعب عادة على هذا النوع من المهمة، فإننا نقدم إطارا للتقييم الكمي وإظهار النتائج الإيجابية التي تتفوق على الأساليب الحديثة من بين الفن.يتم تقييم طريقتنا على مجموعة بيانات عامة للصحافة والمقالات العلمية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن نقيم استخدام مهام التقييم المباشر الواسعة للكلمة المباشرة للغة المتخصصة.دراسة علمنا هي النص الفلسفي: يتم إخراج أحكام الخبراء البشري على رابط المصطلحات الفلسفية باستخدام مهمة اكتشاف مرادف ومهمة الاتساق.بشكل فريد لمهامنا، يجب على الخبراء الاعتماد ع لى معرفة واضحة ولا يمكنهم استخدام الحدس اللغوي، والتي قد تختلف عن ذلك من الفيلسوف.نجد أن معدلات الاتفاق المشترك بين الخصوصية تشبه تلك المهام التوضيحية الدلالية التقليدية، مما يشير إلى أن هذه المهام يمكن استخدامها لتقييم Word Admingdings من أنواع النصوص التي قد لا تكفي المعرفة الضمنية.
في الكتابة، تعتمد الفكاهة بشكل رئيسي على اللغة المجازية التي تغير الكلمات والتعبيرات المعنى التقليدي للإشارة إلى شيء ما دون قوله مباشرة.يمنع هذا الوجه بمعنى الكلمات معالجة اللغات الطبيعية من الكشف عن النية الحقيقية للاتصال، وبالتالي، يقلل من فعالية ا لمهام مثل تحليل المعنويات أو الكشف عن المشاعر.في هذه المخطوطة، نصف أن نصف مشاركة UMUTEAM في HAHACHATHON 2021، والتي يكون هدفها هو اكتشاف ومعدل محتوى مضحك ومثير للجدل.يستند اقتراحنا إلى مزيج من الميزات اللغوية مع تضمين الكلمات السياقية وغير السياقية.نشارك في جميع المساحات الفرعية المقترحة التي تحققت نتيجة أفضل النتائج في الفكاهة المثيرة للجدل.
نجحت شبكات الخصومة الإندنية (GANS) في تحفيز Adgeddings Word عبر اللغات - خرائط من الكلمات المتطابقة عبر اللغات - دون إشراف.على الرغم من هذه النجاحات، فإن أداء GANS الخاص بالحالة الصعبة للغات البعيدة لا يزال غير مرض.تم تفسير هذه القيود من قبل قوات الق يم "افتراض غير صحيح" أن المصدر والمساحات المستهدفة تضم ذات الصلة من خلال تعيين خطي واحد ويقبل Isomorphic تقريبا.ونحن نفترض بدلا من ذلك، خاصة عبر اللغات البعيدة، فإن التعيين هو مجرد خطي بقطعة حكيمة، ويقترح طريقة التعلم المتعددة الخصوم.هذه الطريقة الرواية تحفز القاموس البذور عبر اللغات من خلال تعيينات متعددة، كل منها مستحث لتناسب التعيين مقابل مساحة فرعية واحدة.تجاربنا على تحريض المعجم الثنائي الثنائي الثنائي البغي وتصنيف المستندات عبر اللغات تظهر أن هذه الطريقة تعمل على تحسين الأداء على أساليب رسم الخرائط الفردية السابقة، خاصة للغات البعيدة.
اقترحت الدراسات النفسية تتبع العين أن التماسك الدلالي في السياق والتنبؤية تؤثر على معالجة اللغة خلال نشاط القراءة.في هذه الدراسة، يمكننا التحقيق في الارتباط بين أوجه التشابه الجيبيني المحسوب مع نماذج تضمين كلمة (كلا من البيانات الثابتة والسياقية) وبي انات تتبع العين من اثنين من القراءة الطبيعية.درسنا أيضا ارتباطات الدرجات المفاجئة المحسوبة بثلاث نماذج لغة حديثة.تظهر نتائجنا ارتباطا قويا للدرجات المحسوبة مع بيرت والقفازات، مما يشير إلى أن التشابه يمكن أن تلعب دورا مهما في أوقات القراءة النمذجة.
تم إلقاء اللوم على الاستقطاب المتزايد لوسائل الإعلام الإخبارية بسبب عدم الخلاف والجدل وحتى العنف. وبالتالي فإن التعرف المبكر للمواضيع المستقطبة هو مسألة عاجلة يمكن أن تساعد في تخفيف الصراع. ومع ذلك، لا يزال القياس الدقيق للاستقطاب الحكيم في الموضوع ت حديا للبحث المفتوح. لمعالجة هذه الفجوة، نقترح Eptisanship-Aware السياقي الموضوع (PACTE)، وهي طريقة للكشف تلقائيا عن الموضوعات المستقطبة من مصادر الأخبار الحزبية. على وجه التحديد، باستخدام نموذج لغة تم تصنيعه حول التعرف على حزب المقالات الإخبارية، نمثل أيديولوجية لجنة أخبار حول موضوع من خلال تضمين موضوع Corpus-contentralized وقياس الاستقطاب باستخدام مسافة جيبوز. نحن نطبق طريقنا إلى مجموعة بيانات من المقالات الإخبارية حول جائحة CovID-19. تظهر تجارب واسعة على مصادر وأخبار مختلفة ومواضيع فعالية طريقتنا لالتقاط الاستقطاب الموضعي، كما هو موضح بفعاليتها لاسترجاع أكثر الموضوعات المستقطبة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا