ترغب بنشر مسار تعليمي؟ اضغط هنا

StoryDB: مجموعة بيانات سرد متعددة اللغات

StoryDB: Broad Multi-language Narrative Dataset

297   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة StoryDB --- مجموعة بيانات واسعة متعددة اللغات من الروايات.StoryDB هي جثة من النصوص التي تضم قصص في 42 لغة مختلفة.تتضمن كل لغة 500+ قصص.تشمل بعض اللغات أكثر من 20 ألف قصة.يتم فهرسة كل قصة عبر اللغات والمسمى مع العلامات مثل النوع أو الموضوع.يعرض Corpus تباين موضعي ولغوي غني ويمكن أن يكون بمثابة مورد لدراسة دور السرد في معالجة اللغة الطبيعية في مختلف اللغات بما في ذلك الموارد المنخفضة.نوضح أيضا كيف يمكن استخدام مجموعة البيانات لقياس ثلاث نماذج متعددة اللغات الحديثة، وهي mdistillbert و mbert و xlm-roberta.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقدم متعدد اليوراء، مجموعة بيانات جديدة متعددة اللغات لتصنيف الموضوع للوثائق القانونية. تضم DataSet قوانين الاتحاد الأوروبي 65 ألف (EU)، والتي ترجمت رسميا في 23 لغة، مشروحا بالملصقات المتعددة من تصنيف Eurovoc. نسلط الضوء على تأثير المنفأة الزمنية الا نجراف وأهمية التسلسل الزمني، بدلا من الانقسامات العشوائية. نستخدم DataSet كاختبار لنقل صفرية عبر اللغات، حيث استغلنا المستندات التدريبية المشروح بلغة واحدة (مصدر) لتصنيف المستندات بلغة أخرى (الهدف). نجد أن ضبط النموذج المحدد المتعدد اللغتين (XLM-Roberta، MT5) في لغة مصدر واحدة يؤدي إلى نسيان كارثي من المعرفة متعددة اللغات، وبالتالي، فإن تحويل صفر ضعيف إلى لغات أخرى. استراتيجيات التكيف، وهي استراتيجيات دقيقة، محولات، معترفيت، LNFIT، اقترحت في الأصل تسريع الضبط الجميل للمهام النهائية الجديدة، والمساعدة في الاحتفاظ بالمعرفة متعددة اللغات من الاحتجاج، وتحسين نقل اللغات الصفر قليلا، ولكن تأثيرها يعتمد أيضا على ذلك على النموذج المحدد مسبقا يستخدم وحجم مجموعة التسمية.
وقد حافظت العلامات الدلالية المتعددة اللغات واللغات الدلالية (SRL) مؤخرا عن الاهتمام المتزايد لأن تقنيات تمثيل النص متعدد اللغات أصبحت أكثر فعالية ومتاحة على نطاق واسع. في حين أن العمل الحديث قد حقق النجاح المتزايد، فإن النتائج على معايير الذهب متعدد ة اللغات لا تزال غير قابلة للمقارنة بسهولة عبر اللغات، مما يجعل من الصعب فهم حيث نقف. على سبيل المثال، في Conll-2009، تتأثر المقارنات القياسية لمعيار SRL متعدد اللغات، وهي مقارنات لغة إلى لغوية بحقيقة أن كل لغة لها مجموعة بيانات خاصة بها والتي تختلف عن الآخرين في الحجم والمجالات ومجموعات من التسميات والإرشادات التوضيحية. في هذه الورقة، نتعلم هذه المشكلة واقترح United-SRL، معيار جديد لعطلة SRL متعددة اللغات والتبادلة والاعتماد على التبعية. يوفر United-SRL شرحا متوازيا من الخبراء باستخدام مخزون هيكل الوسائد المشترك، مما يسمح بالمقارنات المباشرة عبر اللغات والدراسات المشجعة على النقل عبر اللغات في SRL. نقوم بإصدار United-SRL V1.0 في https://github.com/sapienzanlp/united-srl.
أظهرت نماذج اختيار الاستجابة متعددة الدوران مؤخرا أداء مماثل للبشر في العديد من البيانات القياسية.ومع ذلك، في البيئة الحقيقية، غالبا ما تحتوي هذه النماذج على نقاط ضعف، مثل اتباع تنبؤات غير صحيحة تستند بشكل كبير على الأنماط السطحية دون فهم شامل للسياق .على سبيل المثال، غالبا ما تعطي هذه النماذج درجات عالية مرشحة للاستجابة الخاطئة التي تحتوي على العديد من الكلمات الرئيسية المتعلقة بالسياق ولكن باستخدام المضارع غير المتناقص.في هذه الدراسة، نقوم بتحليل نقاط الضعف في نماذج اختيار استجابة الاستجابة الكورية من هذا المجال ونشر مجموعة بيانات الخصومة لتقييم هذه نقاط الضعف.نقترح أيضا استراتيجية لبناء نموذج قوي في هذه البيئة الخصومة.
في هذه الورقة، نقدم أول بيانات مفاجئة متعددة اللغات متاحة للجمهور.جمعنا حوالي 6M أسئلة وأجوبة أزواج من الويب، في 21 لغة مختلفة.على الرغم من أن هذا أكبر بكثير من مجموعات بيانات استرجاع الأسئلة الشائعة الحالية، إلا أنها تأتي مع تحدياتها الخاصة: ازدواجي ة المحتوى والتوزيع غير المتكافئ للمواضيع.نعتمد إعداد مماثل لاسترجاع مرور كثيف (DPR) واختبار العديد من التشفير BI على هذه البيانات.تكشف تجاربنا أن نموذج متعدد اللغات يعتمد على XLM-Roberta يحقق أفضل النتائج، باستثناء اللغة الإنجليزية.يبدو أن لغات الموارد السفلية تتعلم من بعضها البعض ككلمة متعددة اللغات يحقق MRR أعلى من تلك الخاصة باللغة.يكشف تحليلنا النوعي عن تنشيط النموذج على تغييرات كلمة بسيطة.نحن نطلق علنا علنا DataSet، نموذج، وتدريب البرنامج النصي.
عند قراءة قطعة أدبية، غالبا ما يصنع القراء استنتاجات حول أدوار الشخصيات والشخصيات والعلاقات والمهالية والإجراءات، وما إلى ذلك بينما يمكن للبشر السحب بسهولة على تجاربهم السابقة لبناء مثل هذه النظرة التي تركز على الطابع للسرد، فهم الشخصياتيمكن أن تكون الروايات مهمة صعبة للأجهزة.لتشجيع البحث في هذا المجال من فهم السرد المركزي بالشخصية، نقدم LCSU - مجموعة بيانات جديدة من القطع الأدبية وملخصاتها مقترن بأوصاف الشخصيات التي تظهر فيها.نقدم أيضا مهام جديدة على LCCU: تحديد الأحرف وتوليد وصف الشخصيات.تجاربنا مع العديد من النماذج اللغوية المدربة مسبقا مكيفة لهذه المهام توضح أن هناك حاجة إلى نماذج أفضل من الفهم السردي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا