ترغب بنشر مسار تعليمي؟ اضغط هنا

KLMO: رسم بياني المعرفة نموذج اللغة المحددة مسبقا مع علاقات حبيبات دقيقة

KLMo: Knowledge Graph Enhanced Pretrained Language Model with Fine-Grained Relationships

204   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توفر التفاعلات بين الكيانات في الرسم البياني للمعرفة (KG) معرفة غنية لتعلم تمثيل اللغة. ومع ذلك، تركز نماذج اللغة المحددة على المعرفة المعزوفة المعرفة الحالية (PLMS) فقط على معلومات الكيان وتجاهل العلاقات الجميلة بين الكيانات. في هذا العمل، نقترح دمج كجم (بما في ذلك كلا من الكيانات والعلاقات) في عملية التعلم اللغوي للحصول على نموذج اللغة المحسنة KG، وهي KLMO. على وجه التحديد، تم تصميم مجمع المعرفة الرواية للنموذج صراحة التفاعل بين الكيان يمتد في النص وجميع الكيانات والعلاقات في كجم سياقي. يتم استخدام هدف تنبؤ العلاقة لدمج معلومات العلاقة من خلال الإشراف البعيد. يتم استخدام هدف ربط الكيان بشكل أكبر لربط كيان يمتد في نص إلى كيانات في كجم. وبهذه الطريقة، يمكن دمج المعرفة المهيكلة بشكل فعال في تمثيلات اللغة. توضح النتائج التجريبية أن KLMO يحقق تحسينات كبيرة على العديد من المهام التي يحركها المعرفة، مثل تصنيف الكيانات وتصنيف العلاقة، مقارنة مع PLMs المعرفة المعززة للحكومة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

للحصول على تضمين الجملة ذات الجودة العالية من نماذج اللغة المحددة مسبقا (PLMS)، يجب أن تكون تؤدي إما بزيادة أهداف محالمنة إضافية أو Finetuned على مجموعة كبيرة من أزواج النص المسمى.في حين أن النهج الأخير يتفوق عادة على السابق، إلا أنه يتطلب جهد إنساني كبير لتوليد مجموعات بيانات مناسبة من الحجم الكافي.في هذه الورقة، نظير على هذه الورقة، نظرا لأن PLMS يمكن أن يتم الاستفادة منها للحصول على مدينات جملة عالية الجودة دون الحاجة إلى البيانات المسمى أو التصميم أو التعديلات على الهدف المحدد: نحن نستخدم القدرات الاستهادة للمقطوعات الكبيرة والأداء عالية الأداء لتوليد مجموعات بيانات كاملةأزواج النص المسمى من نقطة الصفر، والتي نستخدمها بعد ذلك للحصول على نماذج أصغر بكثير وأكثر كفاءة.يتفوق نهجنا غير المعدل بالكامل بشكل كامل
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة هذا العيب، نعتمد نهجا للتعلم ونقله واقتراح خط أنابيب التدريب الذي يتيح نماذج اللغة المدربة مسبقا لتوليد أول اتصالات عالية الجودة في إعداد غير محدد. تتكون وصفة لدينا من تكيف المهام والإشراف الذاتي وخوارزمية فك التشفير الجديدة المسماة حظر ديناميكي (DB). لفرض نموذج سطح متغاضي عن الإدخال، كلما أن نموذج اللغة ينبعث رمز رمزي موجود في تسلسل المصدر، يمنع DB النموذج من إخراج الرمز المميز اللاحق للمصدر خطوة الجيل التالي. نظرا للتقييمات التلقائية والإنسانية أن نهجنا يحقق أداء حديثة من كل من زوج السؤال Quora (QQP) ومجموعات بيانات Paranmt قوية لتحويل المجال بين مجموعة بيانات التوزيعات المميزة. نحن نوضح أيضا تحويلاتنا النموذجية إلى إعادة صياغة لغات أخرى دون أي رسوم إضافية.
التصنيفات هي تمثيل رمزي للعلاقات الهرمية بين المصطلحات أو الكيانات. في حين أن التصنيفات مفيدة في تطبيقات واسعة، فإن تحديثها أو الحفاظ عليها يدويا كثيفة العمالة وصعبة الحجم في الممارسة العملية. تفشل الأساليب الإشرافية التقليدية لهذه المهمة التخصيب هذه في العثور على والدي الأمثل للمصطلحات الجديدة في إعدادات الموارد المنخفضة حيث تتوفر تصنيفات صغيرة فقط بسبب التجاوز عن العلاقات الهرمية في التصنيفات. لمعالجة مشكلة تخصيب التصنيف المنخفض للموارد، نقترح Musubu، وهو إطار فعال لإثراء التصنيف في إعدادات الموارد المنخفضة مع نماذج اللغة المحددة مسبقا (LMS) كقواعد المعرفة للتعويض عن نقص المعلومات. يستفيد Musubu مصنف قائم على LM لتحديد ما إذا كان أزواج المصطلح المدبأ أو عدم وجود علاقات هرمية. يستخدم Musubu أيضا أنماطا هارا لتوليد استفسارات للاستفادة من المعرفة الضمنية من LM بكفاءة من أجل التنبؤ الأكثر دقة. إننا نوضح تجريبيا فعالية طريقتنا في تجارب واسعة النطاق بشأن التصنيفات من كل من مهمة Semeval ومجموعات بيانات التجزئة العالمية الحقيقية.
في هذه الورقة، نقدم نظاما يستغل نماذج اللغة المدربة مسبقا مسبقا لتعيين ملصقات المجال إلى Synpesets Wordnet دون أي نوع من الإشراف.علاوة على ذلك، لا يقتصر النظام استخدام مجموعة معينة من ملصقات المجال.نحن نستنفذ المعرفة المشفرة في مختلف نماذج اللغة المد بعة مسبقا على الرف والتركيبات المهمة لاستنتاج تسمية المجال لتعريف Wordnet معين.يحقق نظام الطلقة الصفرية المقترحة حديثة جديدة في مجموعة البيانات الإنجليزية المستخدمة في التقييم.
يعمل العمل المسبق على جيل البيانات إلى النص، ومهمة تحويل الكلام الرسم البياني (KG) ثلاث مرات إلى نص طبيعي، يركز على مجموعات البيانات القياسية الخاصة بالمجال. ومع ذلك، في هذه الورقة، فإننا ننفذنا اللغة الإنجليزية بأكملها Wikidata KG، ومناقشة التحديات الفريدة المرتبطة بمجال واسع ومجموع واسع النطاق. نوضح كذلك بأنه لفظي كجم شامل ومكون من كجم مثل Wikidata يمكن استخدامه لدمج KGS الهيكلية واللغات الطبيعية. على عكس العديد من البنيات التي تم تطويرها لدمج هاتين المصدرين، فإن نهجنا يحول كجم إلى نص طبيعي، مما يسمح له بالدمج بسلاسة في نماذج اللغة الحالية. إنه يحمل مزايا أخرى لتحسين الدقة الواقعية وتقليل السمية في نموذج اللغة الناتج. نقوم بتقييم هذا النهج عن طريق زيادة عملية استرجاع النموذج لغوي استرجاع وإظهار تحسينات كبيرة على مهام المعرفة المكثفة في المجال المفتوح وكثير المعرفة LAMA.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا