ترغب بنشر مسار تعليمي؟ اضغط هنا

دراسة استكشافية حول تلخيص الحوار الطويلة: ما الذي يعمل وما هو التالي

An Exploratory Study on Long Dialogue Summarization: What Works and What's Next

579   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يلخص الحوار يساعد القراء على التقاط المعلومات البارزة من محادثات طويلة في الاجتماعات والمقابلات والمسلسلات التلفزيونية. ومع ذلك، فإن حوالات العالم الحقيقي تشكل تحديا كبيرا لنماذج التلخيص الحالية، حيث يتجاوز طول الحوار عادة حدود المدخلات التي تفرضها النماذج المدربة مسبقا القائمة على المحولات، والطبيعة التفاعلية للحوالات هي المعلومات ذات الصلة أكثر تعتمد على السياق وقدر موزعة من المقالات الإخبارية. في هذا العمل، نقوم بإجراء دراسة شاملة حول تلخيص الحوار الطويل من خلال التحقيق في ثلاث استراتيجيات للتعامل مع مشكلة الإدخال المطول وتحديد موقع المعلومات ذات الصلة: (1) نماذج المحولات الموسعة مثل Longformer، (2) استرداد نماذج خط أنابيب العديد من طرق استرجاع الحوار النطق، و (3) نماذج ترميز الحوار الهرمي مثل HMNet. نتائجنا التجريبية على ثلاث مجموعات بيانات حوار طويلة (QMSUM، MediaSum، Searscreen) تبين أن نماذج خط أنابيب الاسترداد - بعد ذلك، تسفر عن أفضل أداء. نوضح أيضا أنه يمكن تحسين جودة الملخص مع نموذج استرجاع أقوى وأحيث محاكاة بيانات الملخصات الخارجية المناسبة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت أنظمة ربط الكيان (EL) نتائج مثيرة للإعجاب على المعايير القياسية بشكل أساسي بفضل التمثيلات السياقية المقدمة من نماذج اللغة المحددة مسبقا.ومع ذلك، لا تزال هذه الأنظمة تتطلب كميات ضخمة من البيانات - ملايين الأمثلة المسمى - في أفضل حالاتهم، مع أوقات تدريبية تتجاوز غالبا عدة أيام، خاصة عندما تتوفر موارد حسابية محدودة.في هذه الورقة، ننظر إلى كيفية استغلال التعرف على الكيان المسمى (ner) لتضييق الفجوة بين أنظمة EL المدربين على كميات عالية ومنخفضة من البيانات المسمى.وبشكل أكثر تحديدا، نوضح كيف وإلى أي مدى يمكن للنظام أن يستفيد نظام EL من NER لتعزيز تمثيلات كيانه، وتحسين اختيار المرشح، وحدد عينات سلبية أكثر فعالية وفرض قيود صلبة وناعمة على كيانات الإخراج.نطلق سراح البرامج ونقاط التفتيش النموذجية - في https://github.com/babelscape/ner4el.
في السنوات القليلة الماضية، تم اقتراح العديد من الطرق لبناء تضمين التوطين.كان الهدف العام هو الحصول على تمثيلات جديدة تدمج المعرفة التكميلية من مختلف المدينات المدربة مسبقا مما يؤدي إلى تحسين الجودة الشاملة.ومع ذلك، تم تقييم Enterpaintings Meta-embed dings السابق باستخدام مجموعة متنوعة من الأساليب ومجموعات البيانات، مما يجعل من الصعب استخلاص استنتاجات ذات مغزى بشأن مزايا كل منهج.في هذه الورقة نقترح إطارا مشتركا موحدا، بما في ذلك المهام الجوهرية والخارجية، من أجل تقييم عادل وموضوعي لتقييم التوطين.علاوة على ذلك، نقدم طريقة جديدة لتوليد تضمين التوطين، مما يفوقن العمل السابق على عدد كبير من معايير التقييم الجوهرية.كما يتيح لنا إطار التقييم أن نستنتج أن التقييمات الخارجية السابقة للمضفة المتمثلة في المبالغة في تقديرها.
أدت إدخال مذكرات الكلمات المحول المستندة إلى المحولات المدربين مسبقا إلى تحسينات كبيرة في دقة المحللين المستندة إلى الرسم البياني للأطر مثل التبعيات العالمية (UD). ومع ذلك، يختلف الأمر السابق في الأبعاد المختلفة، بما في ذلك اختيارهم لنماذج اللغة المد ربة مسبقا وما إذا كانوا يستخدمون طبقات LSTM. مع تهدف إلى تحرير آثار هذه الخيارات وتحديد بنية بسيطة ولكنها قابلة للتطبيق على نطاق واسع، نقدم خطوات، ومحلل التبعية المستندة إلى الرسم البياني المعياري الجديد. باستخدام خطوات، نقوم بإجراء سلسلة من التحليلات على OD Corpora من مجموعة متنوعة من اللغات. نجد أن اختيار المدينات المدربة مسبقا له كبير تأثير على أداء المحلل وتحديد XLM-R كخيار قوي عبر اللغات في دراستنا. لا توفر إضافة طبقات LSTM أي فوائد عند استخدام Embeddings القائمة على المحولات. قد يؤدي إعداد إعدادات التدريب متعددة المهام إلى إخراج ميزات UD إضافية. أخذ هذه الأفكار معا، نقترح بنية ومحزين بسيطة ولكنها قابلة للتطبيق على نطاق واسع، وتحقيق نتائج جديدة من من من بين الفنون (من حيث LAS) لمدة 10 لغات مختلفة.
إن القدرة على توليد أسئلة التوضيح I.E.، أسئلة تحدد المعلومات المفقودة المفيدة في سياق معين، مهمة في الحد من الغموض.يستخدم البشر تجربة سابقة مع سياقات مماثلة لتشكيل وجهة نظر عالمية ومقارنين السياق المعدد للتأكد من مفقود وما هو مفيد في السياق.مستوحاة م ن ذلك، نقترح نموذجا لتدوين سؤال التوضيح حيث نحدد أولا ما هو مفقود عن طريق اختلاف الفرق بين المنظر العالمي والمحلي ثم تدريب نموذج لتحديد ما هو مفيد وتوليد سؤال حوله.تتفوق نموذجنا على العديد من خطوط الأساس كما يحكم عليها كل من المقاييس التلقائية والبشر.
تكتسب المحادثات التي تلخيصها عبر النهج العصبية الجر أبحث في الآونة الأخيرة، ومع ذلك، لا تزال تحديا للحصول على حلول عملية. وتشمل أمثلة مثل هذه التحديات تبادل المعلومات غير منظم في الحوارات والتفاعلات غير الرسمية بين المتحدثين والتغيرات الديناميكية للم تكلمين كما يتطور الحوار. العديد من هذه التحديات تؤدي إلى روابط كوراسة المعقد. لذلك، في هذا العمل، يمكننا التحقيق في نهج مختلفة لإدماج معلومات Aquerfery بشكل صريح في نماذج تلخيص الحوار المبادرة العصبية لمعالجة التحديات المذكورة أعلاه. تظهر النتائج التجريبية أن النهج المقترحة تحقق من الأداء الحديثة، مما يعني أنه من المفيد استخدام معلومات Aquerence في تلخيص الحوار. توصي نتائج التقييم على صحة واقعية تشير إلى أن هذه النماذج المفيدة هي أفضل في تتبع تدفق المعلومات بين المحاورين وربط الوضع / الإجراءات الدقيقة مع المحاورين المقابلين وذكر الشخص.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا