لا يزال التبديل (CS)، ظاهرة في كل مكان بسبب سهولة الاتصالات التي تقدمها في المجتمعات متعددة اللغات لا تزال مشكلة متفائلة في معالجة اللغة. الأسباب الرئيسية وراء ذلك هي: (1) الحد الأدنى من الجهود في الاستفادة من نماذج متعددة اللغات متعددة اللغات الكبيرة، و (2) عدم وجود بيانات مشروح. حالة التمييز بين الأداء المنخفض للنماذج متعددة اللغات في CS هي خلط اللغات داخل الجملة التي تؤدي إلى تبديل النقاط. نقوم أولا بقياس مهام وضع العلامات على التسلسل - POS و NER على 4 أزواج لغة مختلفة مع مجموعة من النماذج المحددة مسبقا لتحديد المشكلات وتحديد أفضل نموذج أداء شار Bert فيما بينها (معالجة (1)). ثم نقترح طريقة تدريب ذاتية لإعادة توجيه النماذج المحددة مسبقا باستخدام تحيز نقطة التبديل عن طريق الاستفادة من البيانات غير الموحدة (معالجة (2)). نوضح أخيرا أن نهجنا ينفذ جيدا على كلا المهام عن طريق تقليل الفجوة بين أداء نقطة التبديل مع الاحتفاظ بالأداء العام على أزواج لغتين متميزة في كلتا المهامتين. نحن نخطط لإطلاق سراح نماذجنا والرمز لجميع تجاربنا.
Code-switching (CS), a ubiquitous phenomenon due to the ease of communication it offers in multilingual communities still remains an understudied problem in language processing. The primary reasons behind this are: (1) minimal efforts in leveraging large pretrained multilingual models, and (2) the lack of annotated data. The distinguishing case of low performance of multilingual models in CS is the intra-sentence mixing of languages leading to switch points. We first benchmark two sequence labeling tasks -- POS and NER on 4 different language pairs with a suite of pretrained models to identify the problems and select the best performing char-BERT model among them (addressing (1)). We then propose a self training method to repurpose the existing pretrained models using a switch-point bias by leveraging unannotated data (addressing (2)). We finally demonstrate that our approach performs well on both tasks by reducing the gap between the switch point performance while retaining the overall performance on two distinct language pairs in both the tasks. We plan to release our models and the code for all our experiments.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما يتم تقييم نماذج اللغة المستخدمة في التعرف على الكلام بشكل جوهري باستخدام حيرة في بيانات الاختبار أو غير مسبوق مع نظام التعرف على الكلام التلقائي (ASR). لا يرتبط التقييم السابق دائما بشكل جيد مع أداء ASR، في حين أن الأخير يمكن أن يكون محددا ل
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة
حقق نماذج اللغة المدربة مسبقا بشكل جيد (LMS) نجاحا هائلا في العديد من مهام معالجة اللغة الطبيعية (NLP)، لكنها لا تزال تتطلب بيانات مفرطة الحجم في مرحلة ضبط الدقيقة. ندرس مشكلة LMS المدبرة مسبقا باستخدام إشراف ضعيف فقط، دون أي بيانات معدنية. هذه المشك
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ
تتطلب شبكات العصبية العميقة الحديثة من بين الفن بيانات تدريبية ذات صلة واسعة النطاق غالبا ما تكون مكلفة للحصول على أو غير متوفرة للعديد من المهام. لقد ثبت أن الإشراف ضعيف في شكل قواعد خاصة بالمجال مفيدا في مثل هذه الإعدادات لإنشاء بيانات التدريب المس